问题
I'm working on a project that involves a boost::beast
websocket/http mixed server, which runs on top of boost::asio
. I've heavily based my project off the advanced_server.cpp example source.
It works fine, but right now I'm attempting to add a feature that requires the sending of a message to all connected clients.
I'm not very familiar with boost::asio
, but right now I can't see any way to have something like "broadcast" events (if that's even the correct term).
My naive approach would be to see if I can have the construction of websocket_session()
attach something like an event listener, and the destructor detatch the listener. At that point, I could just fire the event, and have all the currently valid websocket sessions (to which the lifetime of websocket_session()
is scoped) execute a callback.
There is https://stackoverflow.com/a/17029022/268006, which does more or less what I want by (ab)using a boost::asio::steady_timer
, but that seems like a kind of horrible hack to accomplish something that should be pretty straightforward.
Basically, given a stateful boost::asio
server, how can I do an operation on multiple connections?
回答1:
First off: You can broadcast UDP, but that's not to connected clients. That's just... UDP.
Secondly, that link shows how to have a condition-variable (event)-like interface in Asio. That's only a tiny part of your problem. You forgot about the big picture: you need to know about the set of open connections, one way or the other:
- e.g. keeping a container of session pointers (
weak_ptr
) to each connection - each connection subscribing to a signal slot (e.g. Boost Signals).
Option 1. is great for performance, option 2. is better for flexibility (decoupling the event source from subscribers, making it possible to have heterogenous subscribers, e.g. not from connections).
Because I think Option 1. is much simpler w.r.t to threading, better w.r.t. efficiency (you can e.g. serve all clients from one buffer without copying) and you probably don't need to doubly decouple the signal/slots, let me refer to an answer where I already showed as much for pure Asio (without Beast):
- How to design proper release of a boost::asio socket or wrapper thereof
It shows the concept of a "connection pool" - which is essentially a thread-safe container of weak_ptr<connection>
objects with some garbage collection logic.
Demonstration: Introducing Echo Server
After chatting about things I wanted to take the time to actually demonstrate the two approaches, so it's completely clear what I'm talking about.
First let's present a simple, run-of-the mill asynchronous TCP server with
- with multiple concurrent connections
- each connected session reads from the client line-by-line, and echoes the same back to the client
- stops accepting after 3 seconds, and exits after the last client disconnects
master branch on github
#include <boost/asio.hpp>
#include <memory>
#include <list>
#include <iostream>
namespace ba = boost::asio;
using ba::ip::tcp;
using boost::system::error_code;
using namespace std::chrono_literals;
using namespace std::string_literals;
static bool s_verbose = false;
struct connection : std::enable_shared_from_this<connection> {
connection(ba::io_context& ioc) : _s(ioc) {}
void start() { read_loop(); }
void send(std::string msg, bool at_front = false) {
post(_s.get_io_service(), [=] { // _s.get_executor() for newest Asio
if (enqueue(std::move(msg), at_front))
write_loop();
});
}
private:
void do_echo() {
std::string line;
if (getline(std::istream(&_rx), line)) {
send(std::move(line) + '\n');
}
}
bool enqueue(std::string msg, bool at_front)
{ // returns true if need to start write loop
at_front &= !_tx.empty(); // no difference
if (at_front)
_tx.insert(std::next(begin(_tx)), std::move(msg));
else
_tx.push_back(std::move(msg));
return (_tx.size() == 1);
}
bool dequeue()
{ // returns true if more messages pending after dequeue
assert(!_tx.empty());
_tx.pop_front();
return !_tx.empty();
}
void write_loop() {
ba::async_write(_s, ba::buffer(_tx.front()), [this,self=shared_from_this()](error_code ec, size_t n) {
if (s_verbose) std::cout << "Tx: " << n << " bytes (" << ec.message() << ")" << std::endl;
if (!ec && dequeue()) write_loop();
});
}
void read_loop() {
ba::async_read_until(_s, _rx, "\n", [this,self=shared_from_this()](error_code ec, size_t n) {
if (s_verbose) std::cout << "Rx: " << n << " bytes (" << ec.message() << ")" << std::endl;
do_echo();
if (!ec)
read_loop();
});
}
friend struct server;
ba::streambuf _rx;
std::list<std::string> _tx;
tcp::socket _s;
};
struct server {
server(ba::io_context& ioc) : _ioc(ioc) {
_acc.bind({{}, 6767});
_acc.set_option(tcp::acceptor::reuse_address());
_acc.listen();
accept_loop();
}
void stop() {
_ioc.post([=] {
_acc.cancel();
_acc.close();
});
}
private:
void accept_loop() {
auto session = std::make_shared<connection>(_acc.get_io_context());
_acc.async_accept(session->_s, [this,session](error_code ec) {
auto ep = ec? tcp::endpoint{} : session->_s.remote_endpoint();
std::cout << "Accept from " << ep << " (" << ec.message() << ")" << std::endl;
session->start();
if (!ec)
accept_loop();
});
}
ba::io_context& _ioc;
tcp::acceptor _acc{_ioc, tcp::v4()};
};
int main(int argc, char** argv) {
s_verbose = argc>1 && argv[1] == "-v"s;
ba::io_context ioc;
server s(ioc);
std::thread th([&ioc] { ioc.run(); }); // todo exception handling
std::this_thread::sleep_for(3s);
s.stop(); // active connections will continue
th.join();
}
Approach 1. Adding Broadcast Messages
So, let's add "broadcast messages" that get sent to all active connections simultaneously. We add two:
- one at each new connection (saying "Player ## has entered the game")
one that emulates a global "server event", like you described in the question). It gets triggered from within main:
std::this_thread::sleep_for(1s); auto n = s.broadcast("random global event broadcast\n"); std::cout << "Global event broadcast reached " << n << " active connections\n";
Note how we do this by registering a weak pointer to each accepted connection and operating on each:
_acc.async_accept(session->_s, [this,session](error_code ec) {
auto ep = ec? tcp::endpoint{} : session->_s.remote_endpoint();
std::cout << "Accept from " << ep << " (" << ec.message() << ")" << std::endl;
if (!ec) {
auto n = reg_connection(session);
session->start();
accept_loop();
broadcast("player #" + std::to_string(n) + " has entered the game\n");
}
});
broadcast
is also used directly from main
and is simply:
size_t broadcast(std::string const& msg) {
return for_each_active([msg](connection& c) { c.send(msg, true); });
}
using-asio-post branch on github
#include <boost/asio.hpp>
#include <memory>
#include <list>
#include <iostream>
namespace ba = boost::asio;
using ba::ip::tcp;
using boost::system::error_code;
using namespace std::chrono_literals;
using namespace std::string_literals;
static bool s_verbose = false;
struct connection : std::enable_shared_from_this<connection> {
connection(ba::io_context& ioc) : _s(ioc) {}
void start() { read_loop(); }
void send(std::string msg, bool at_front = false) {
post(_s.get_io_service(), [=] { // _s.get_executor() for newest Asio
if (enqueue(std::move(msg), at_front))
write_loop();
});
}
private:
void do_echo() {
std::string line;
if (getline(std::istream(&_rx), line)) {
send(std::move(line) + '\n');
}
}
bool enqueue(std::string msg, bool at_front)
{ // returns true if need to start write loop
at_front &= !_tx.empty(); // no difference
if (at_front)
_tx.insert(std::next(begin(_tx)), std::move(msg));
else
_tx.push_back(std::move(msg));
return (_tx.size() == 1);
}
bool dequeue()
{ // returns true if more messages pending after dequeue
assert(!_tx.empty());
_tx.pop_front();
return !_tx.empty();
}
void write_loop() {
ba::async_write(_s, ba::buffer(_tx.front()), [this,self=shared_from_this()](error_code ec, size_t n) {
if (s_verbose) std::cout << "Tx: " << n << " bytes (" << ec.message() << ")" << std::endl;
if (!ec && dequeue()) write_loop();
});
}
void read_loop() {
ba::async_read_until(_s, _rx, "\n", [this,self=shared_from_this()](error_code ec, size_t n) {
if (s_verbose) std::cout << "Rx: " << n << " bytes (" << ec.message() << ")" << std::endl;
do_echo();
if (!ec)
read_loop();
});
}
friend struct server;
ba::streambuf _rx;
std::list<std::string> _tx;
tcp::socket _s;
};
struct server {
server(ba::io_context& ioc) : _ioc(ioc) {
_acc.bind({{}, 6767});
_acc.set_option(tcp::acceptor::reuse_address());
_acc.listen();
accept_loop();
}
void stop() {
_ioc.post([=] {
_acc.cancel();
_acc.close();
});
}
size_t broadcast(std::string const& msg) {
return for_each_active([msg](connection& c) { c.send(msg, true); });
}
private:
using connptr = std::shared_ptr<connection>;
using weakptr = std::weak_ptr<connection>;
std::mutex _mx;
std::vector<weakptr> _registered;
size_t reg_connection(weakptr wp) {
std::lock_guard<std::mutex> lk(_mx);
_registered.push_back(wp);
return _registered.size();
}
template <typename F>
size_t for_each_active(F f) {
std::vector<connptr> active;
{
std::lock_guard<std::mutex> lk(_mx);
for (auto& w : _registered)
if (auto c = w.lock())
active.push_back(c);
}
for (auto& c : active) {
std::cout << "(running action for " << c->_s.remote_endpoint() << ")" << std::endl;
f(*c);
}
return active.size();
}
void accept_loop() {
auto session = std::make_shared<connection>(_acc.get_io_context());
_acc.async_accept(session->_s, [this,session](error_code ec) {
auto ep = ec? tcp::endpoint{} : session->_s.remote_endpoint();
std::cout << "Accept from " << ep << " (" << ec.message() << ")" << std::endl;
if (!ec) {
auto n = reg_connection(session);
session->start();
accept_loop();
broadcast("player #" + std::to_string(n) + " has entered the game\n");
}
});
}
ba::io_context& _ioc;
tcp::acceptor _acc{_ioc, tcp::v4()};
};
int main(int argc, char** argv) {
s_verbose = argc>1 && argv[1] == "-v"s;
ba::io_context ioc;
server s(ioc);
std::thread th([&ioc] { ioc.run(); }); // todo exception handling
std::this_thread::sleep_for(1s);
auto n = s.broadcast("random global event broadcast\n");
std::cout << "Global event broadcast reached " << n << " active connections\n";
std::this_thread::sleep_for(2s);
s.stop(); // active connections will continue
th.join();
}
Approach 2: Those Broadcast But With Boost Signals2
The Signals approach is a fine example of Dependency Inversion.
Most salient notes:
- signal slots get invoked on the thread invoking it ("raising the event")
- the
scoped_connection
is there so subscriptions are *automatically removed when theconnection
is destructed - there's subtle difference in the wording of the console message from "reached # active connections" to "reached # active subscribers".
The difference is key to understanding the added flexibility: the signal owner/invoker does not know anything about the subscribers. That's the decoupling/dependency inversion we're talking about
using-signals2 branch on github
#include <boost/asio.hpp>
#include <memory>
#include <list>
#include <iostream>
#include <boost/signals2.hpp>
namespace ba = boost::asio;
using ba::ip::tcp;
using boost::system::error_code;
using namespace std::chrono_literals;
using namespace std::string_literals;
static bool s_verbose = false;
struct connection : std::enable_shared_from_this<connection> {
connection(ba::io_context& ioc) : _s(ioc) {}
void start() { read_loop(); }
void send(std::string msg, bool at_front = false) {
post(_s.get_io_service(), [=] { // _s.get_executor() for newest Asio
if (enqueue(std::move(msg), at_front))
write_loop();
});
}
private:
void do_echo() {
std::string line;
if (getline(std::istream(&_rx), line)) {
send(std::move(line) + '\n');
}
}
bool enqueue(std::string msg, bool at_front)
{ // returns true if need to start write loop
at_front &= !_tx.empty(); // no difference
if (at_front)
_tx.insert(std::next(begin(_tx)), std::move(msg));
else
_tx.push_back(std::move(msg));
return (_tx.size() == 1);
}
bool dequeue()
{ // returns true if more messages pending after dequeue
assert(!_tx.empty());
_tx.pop_front();
return !_tx.empty();
}
void write_loop() {
ba::async_write(_s, ba::buffer(_tx.front()), [this,self=shared_from_this()](error_code ec, size_t n) {
if (s_verbose) std::cout << "Tx: " << n << " bytes (" << ec.message() << ")" << std::endl;
if (!ec && dequeue()) write_loop();
});
}
void read_loop() {
ba::async_read_until(_s, _rx, "\n", [this,self=shared_from_this()](error_code ec, size_t n) {
if (s_verbose) std::cout << "Rx: " << n << " bytes (" << ec.message() << ")" << std::endl;
do_echo();
if (!ec)
read_loop();
});
}
friend struct server;
ba::streambuf _rx;
std::list<std::string> _tx;
tcp::socket _s;
boost::signals2::scoped_connection _subscription;
};
struct server {
server(ba::io_context& ioc) : _ioc(ioc) {
_acc.bind({{}, 6767});
_acc.set_option(tcp::acceptor::reuse_address());
_acc.listen();
accept_loop();
}
void stop() {
_ioc.post([=] {
_acc.cancel();
_acc.close();
});
}
size_t broadcast(std::string const& msg) {
_broadcast_event(msg);
return _broadcast_event.num_slots();
}
private:
boost::signals2::signal<void(std::string const& msg)> _broadcast_event;
size_t reg_connection(connection& c) {
c._subscription = _broadcast_event.connect(
[&c](std::string msg){ c.send(msg, true); }
);
return _broadcast_event.num_slots();
}
void accept_loop() {
auto session = std::make_shared<connection>(_acc.get_io_context());
_acc.async_accept(session->_s, [this,session](error_code ec) {
auto ep = ec? tcp::endpoint{} : session->_s.remote_endpoint();
std::cout << "Accept from " << ep << " (" << ec.message() << ")" << std::endl;
if (!ec) {
auto n = reg_connection(*session);
session->start();
accept_loop();
broadcast("player #" + std::to_string(n) + " has entered the game\n");
}
});
}
ba::io_context& _ioc;
tcp::acceptor _acc{_ioc, tcp::v4()};
};
int main(int argc, char** argv) {
s_verbose = argc>1 && argv[1] == "-v"s;
ba::io_context ioc;
server s(ioc);
std::thread th([&ioc] { ioc.run(); }); // todo exception handling
std::this_thread::sleep_for(1s);
auto n = s.broadcast("random global event broadcast\n");
std::cout << "Global event broadcast reached " << n << " active subscribers\n";
std::this_thread::sleep_for(2s);
s.stop(); // active connections will continue
th.join();
}
See the diff between Approach 1. and 2.: Compare View on github
A sample of the output when run against 3 concurrent clients with:
(for a in {1..3}; do netcat localhost 6767 < /etc/dictionaries-common/words > echoed.$a& sleep .1; done; time wait)
回答2:
The answer from @sehe was amazing, so I'll be brief. Generally speaking, to implement an algorithm which operates on all active connections you must do the following:
Maintain a list of active connections. If this list is accessed by multiple threads, it will need synchronization (
std::mutex
). New connections should be inserted to the list, and when a connection is destroyed or becomes inactive it should be removed from the list.To iterate the list, synchronization is required if the list is accessed by multiple threads (i.e. more than one thread calling
asio::io_context::run
, or if the list is also accessed from threads that are not callingasio::io_context::run
)During iteration, if the algorithm needs to inspect or modify the state of any connection, and that state can be changed by other threads, additional synchronization is needed. This includes any internal "queue" of messages that the connection object stores.
A simple way to synchronize a connection object is to use
boost::asio::post
to submit a function for execution on the connection object's context, which will be either an explicit strand (boost::asio::strand
, as in the advanced server examples) or an implicit strand (what you get when only one thread callsio_context::run
). The Approach 1 provided by @sehe usespost
to synchronize in this fashion.Another way to synchronize the connection object is to "stop the world." That means call
io_context::stop
, wait for all the threads to exit, and then you are guaranteed that no other threads are accessing the list of connections. Then you can read and write connection object state all you want. When you are finished with the list of connections, callio_context::restart
and launch the threads which callio_context::run
again. Stopping theio_context
does not stop network activity, the kernel and network drivers still send and receive data from internal buffers. TCP/IP flow control will take care of things so the application still operates smoothly even though it becomes briefly unresponsive during the "stop the world." This approach can simplify things but depending on your particular application you will have to evaluate if it is right for you.
Hope this helps!
来源:https://stackoverflow.com/questions/49394277/boost-asio-send-message-to-all-connected-clients