此题与\(luoguP1220\)关路灯类似,但是这个题目的收益随时间的变化而变化.
起初我思考来一个三维\(dp\),即两维坐标,一维时间.
可惜爆了空间(艹).
但是由于时间是线性的,所以我们可以反着设.
即设\(dp[0/1][st][ed]\)表示处理完按坐标排序后的第\(st\)个蛋到第\(ed\)个蛋被处理完后对于剩下的蛋所产生的影响.
答案即为\(\sum^{n}_{i=1}y[i]-\min(dp[0][1][n],dp[1][1][n])\).
转移即为普通的区间\(dp\)套路.
\[
\begin{align}
dp[0][st][ed]=&min(dp[0][st][ed],min(\\&dp[0][st+1][ed]+(sum[n]+sum[st]-sum[ed])*(a[st + 1].x - a[st].x),\\&dp[1][st + 1][ed] + (sum[n] + sum[st] - sum[ed]) * (a[ed].x - a[st].x)));\\
dp[1][st][ed]=&min(dp[1][st][ed],min(\\&dp[1][st][ed - 1] + (sum[n] + sum[st - 1] - sum[ed - 1]) * (a[ed].x - a[ed - 1].x),\\&dp[0][st][ed - 1] + (sum[n] + sum[st - 1] - sum[ed - 1]) * (a[ed].x - a[st].x)));
\end{align}
\]
#pragma GCC optimize(3) #include<bits/stdc++.h> #define il inline #define rg register #define gi read<int> using namespace std; const int O = 1010; template<class TT> il TT read() { TT o = 0,fl = 1; char ch = getchar(); while (!isdigit(ch) && ch != '-') ch = getchar(); if (ch == '-') fl = -1, ch = getchar(); while (isdigit(ch)) o = o * 10 + ch - '0', ch = getchar(); return fl * o; } struct Data { int x, y, v; il bool operator < (Data rhs) const { return x < rhs.x; } }a[O]; int n, St, sum[O], dp[2][O][O], Sum; int main() { memset(dp, 63, sizeof dp); n = gi() + 1, a[1].x = St = gi(); for (int i = 2; i <= n; ++i) a[i].x = gi(); for (int i = 2; i <= n; ++i) a[i].y = gi(), Sum += a[i].y; for (int i = 2; i <= n; ++i) a[i].v = gi(); sort(a + 1, a + n + 1); for (int i = 1; i <= n; ++i) sum[i] = sum[i - 1] + a[i].v; for (int i = 1; i <= n; ++i) if (!a[i].v && a[i].x == St) { dp[0][i][i] = dp[1][i][i] = 0; break; } for (int len = 1; len < n; ++len) for (int st = 1; st + len <= n; ++st) { int ed = st + len; dp[0][st][ed] = min(dp[0][st][ed], min(dp[0][st + 1][ed] + (sum[n] + sum[st] - sum[ed]) * (a[st + 1].x - a[st].x), dp[1][st + 1][ed] + (sum[n] + sum[st] - sum[ed]) * (a[ed].x - a[st].x))); dp[1][st][ed] = min(dp[1][st][ed], min(dp[1][st][ed - 1] + (sum[n] + sum[st - 1] - sum[ed - 1]) * (a[ed].x - a[ed - 1].x), dp[0][st][ed - 1] + (sum[n] + sum[st - 1] - sum[ed - 1]) * (a[ed].x - a[st].x))); } printf("%.3lf\n", (Sum - min(dp[1][1][n], dp[0][1][n])) / 1000.); return 0; }