How to remove rows where all columns are zero using dplyr pipe

左心房为你撑大大i 提交于 2019-12-01 18:05:51

Here's a dplyr option:

library(dplyr)
filter_all(dat, any_vars(. != 0))

#       A-XXX  fBM-XXX    P-XXX  vBM-XXX
#1 1.51653276 2.228752 1.733567 3.003979
#2 0.07703724 0.000000 0.000000 0.000000

Here we make use of the logic that if any variable is not equal to zero, we will keep it. It's the same as removing rows where all variables are equal to zero.

Regarding row.names:

library(tidyverse)
dat %>% rownames_to_column() %>% filter_at(vars(-rowname), any_vars(. != 0))
#         rowname      A-XXX  fBM-XXX    P-XXX  vBM-XXX
#1  BATF::JUN_AHR 1.51653276 2.228752 1.733567 3.003979
#2 BATF::JUN_CCR9 0.07703724 0.000000 0.000000 0.000000

We could use reduce from purrr to get the sum of rows and filter the dataset based on the logical vector

library(tidyverse)
dat %>%
    reduce(`+`) %>%
    {. != 0} %>% 
   filter(dat, .)
#       A-XXX  fBM-XXX    P-XXX  vBM-XXX
#1 1.51653276 2.228752 1.733567 3.003979
#2 0.07703724 0.000000 0.000000 0.000000

NOTE: Within the %>%, the row.names gets stripped off. It may be better to create a new column or assign row.names later


If we need the row names as well, then create a row names column early and then use that to change the row names at the end

dat %>%
  rownames_to_column('rn') %>%
  filter(rowSums(.[-1]) != 0) %>% 
  `row.names<-`(., .[['rn']]) %>% select(-rn)
#                   A-XXX  fBM-XXX    P-XXX  vBM-XXX
#BATF::JUN_AHR  1.51653276 2.228752 1.733567 3.003979
#BATF::JUN_CCR9 0.07703724 0.000000 0.000000 0.000000

Here is a third option that uses purrr::pmap to generate the indices of whether or not all rows are zero. Definitely less compact than filter_at, but opens up options for interesting and complex conditions using pmap!

dat <- structure(list(`A-XXX` = c(1.51653275922944, 0.077037240321129, 
                                  0), `fBM-XXX` = c(2.22875185527511, 0, 0), `P-XXX` = c(1.73356698481106, 
                                                                                         0, 0), `vBM-XXX` = c(3.00397859609183, 0, 0)), .Names = c("A-XXX", 
                                                                                                                                                   "fBM-XXX", "P-XXX", "vBM-XXX"), row.names = c("BATF::JUN_AHR", 
                                                                                                                                                                                                 "BATF::JUN_CCR9", "BATF::JUN_IL10"), class = "data.frame")

library(tidyverse)
dat %>%
  rownames_to_column() %>%
  bind_cols(all_zero = pmap_lgl(., function(rowname, ...) all(list(...) == 0))) %>%
  filter(all_zero == FALSE) %>%
  `rownames<-`(.$rowname) %>%
  select(-rowname, -all_zero)
#>                     A-XXX  fBM-XXX    P-XXX  vBM-XXX
#> BATF::JUN_AHR  1.51653276 2.228752 1.733567 3.003979
#> BATF::JUN_CCR9 0.07703724 0.000000 0.000000 0.000000

Created on 2018-03-14 by the reprex package (v0.2.0).

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!