Multiple Logistic Regression with Interaction between Quantitative and Qualitative Explanatory Variables

£可爱£侵袭症+ 提交于 2019-12-01 18:04:13

You use the drc package to fit logistic dose-response models.

First fit the model

require(drc)
mod <- drm(Kill/Total ~ Conc, 
           curveid = Type, 
           weights = Total, 
           data = df, 
           fct =  L.4(fixed = c(NA, 0, 1, NA)), 
           type = 'binomial')

Here curveid=specifies the grouping of the data and fct= specifies a 4 parameter logistic function, with parameters for lower and upper bond fixed at 0 and 1.

Note the differences to glm are negligible:

df2 <- with(data=df,
            expand.grid(Conc=seq(from=min(Conc), to=max(Conc), length=51),
                        Type=levels(Type)))
df2$Pred <- predict(object=mod, newdata = df2)

Here's a histgramm of the differences to the glm prediction

hist(df2$Pred - df1$Pred)

Estimate Effective Doses (and CI) from the model

This is easy with the ED() function:

ED(mod, c(50, 90, 95), interval = 'delta')

Estimated effective doses
(Delta method-based confidence interval(s))

     Estimate Std. Error   Lower  Upper
A:50   9.1468     2.3257  4.5885 13.705
A:90  39.8216     4.3444 31.3068 48.336
A:95  50.2532     5.8773 38.7338 61.773
B:50  16.2936     2.2893 11.8067 20.780
B:90  52.0214     6.0556 40.1527 63.890
B:95  64.1714     8.0068 48.4784 79.864
C:50  12.5477     1.5568  9.4963 15.599
C:90  33.4740     2.7863 28.0129 38.935
C:95  40.5904     3.6006 33.5334 47.648

For each group we get ED50, ED90 & ED95 with CI.

Your link function of choice (\eta= X\hat\beta) has variance for a new observation (x_0): V_{x_0}=x_0^T(X^TWX)^{-1}x_0

So, for a set of candidate doses, we can predict the expected percentage of deaths using the inverse function:

newdata= data.frame(Type=rep(x=LETTERS[1:3], each=5),
                    Conc=rep(x=seq(from=0, to=40, by=10), times=3))
mm <- model.matrix(fm1, newdata)

# get link on link terms (could also use predict)
eta0 <- apply(mm, 1, function(i) sum(i * coef(fm1)))

# inverse logit function
ilogit <- function(x) return(exp(x) / (1+ exp(x)))

# predicted probs
ilogit(eta0)


# for comfidence intervals we can use a normal approximation
lethal_dose <- function(mod, newdata, alpha) {
  qn <- qnorm(1 - alpha /2)
  mm <- model.matrix(mod, newdata)
  eta0 <- apply(mm, 1, function(i) sum(i * coef(fm1)))
  var_mod <- vcov(mod)

  se <- apply(mm, 1, function(x0, var_mod) {
    sqrt(t(x0) %*% var_mod %*% x0)}, var_mod= var_mod)

  out <- cbind(ilogit(eta0 - qn * se),
               ilogit(eta0),
               ilogit(eta0 + qn * se))
  colnames(out) <- c("LB_CI", "point_est", "UB_CI")

  return(list(newdata=newdata,
              eff_dosage= out))
}

lethal_dose(fm1, newdata, alpha= 0.05)$eff_dosage
$eff_dosage
       LB_CI point_est     UB_CI
1  0.2465905 0.3418240 0.4517820
2  0.4361703 0.5152749 0.5936215
3  0.6168088 0.6851225 0.7462674
4  0.7439073 0.8166343 0.8722545
5  0.8315325 0.9011443 0.9439316
6  0.1863738 0.2685402 0.3704385
7  0.3289003 0.4044270 0.4847691
8  0.4890420 0.5567386 0.6223914
9  0.6199426 0.6990808 0.7679095
10 0.7207340 0.8112133 0.8773662
11 0.1375402 0.2112382 0.3102215
12 0.3518053 0.4335213 0.5190198
13 0.6104540 0.6862145 0.7531978
14 0.7916268 0.8620545 0.9113443
15 0.8962097 0.9469715 0.9736370

Rather than doing this manually, you could also manipulate:

predict.glm(fm1, newdata, se=TRUE)$se.fit

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!