Numpy Dynamic Slicing Per Row

梦想的初衷 提交于 2019-12-01 10:45:34

You can work with masked arrays:

import numpy as np

np.random.seed(100)

x = np.arange(0, 100)
x = x.reshape(20, 5)
s_idx = np.random.randint(0, 3, x.shape[0])
e_idx = np.random.randint(3, 6, x.shape[0])

# This is optional, reduce x to the minimum possible block
first_col, last_col = s_idx.min(), e_idx.max()
x = x[:, first_col:last_col]
s_idx -= first_col
e_idx -= first_col

col_idx = np.arange(x.shape[1])
# Mask elements out of range
mask = (col_idx < s_idx[:, np.newaxis]) | (col_idx >= e_idx[:, np.newaxis])
x_masked = np.ma.array(x, mask=mask)
print(x_masked)

Output:

[[0 1 2 3 --]
 [5 6 7 8 9]
 [10 11 12 13 14]
 [-- -- 17 -- --]
 [-- -- 22 -- --]
 [25 26 27 28 --]
 [-- -- 32 33 --]
 [-- 36 37 38 --]
 [-- -- 42 -- --]
 [-- -- 47 -- --]
 [-- -- 52 53 --]
 [-- -- 57 58 --]
 [-- 61 62 63 --]
 [65 66 67 68 69]
 [70 71 72 -- --]
 [75 76 77 78 79]
 [80 81 82 83 --]
 [-- -- 87 88 --]
 [90 91 92 93 94]
 [-- 96 97 98 99]]

You can do most NumPy operations with a masked array, but if you still want the list of arrays you could do something like:

list_arrays = [row[~m] for row, m in zip(x, x_masked.mask)]
print(list_arrays)

Output:

[array([0, 1, 2, 3]),
 array([5, 6, 7, 8, 9]),
 array([10, 11, 12, 13, 14]),
 array([17]),
 array([22]),
 array([25, 26, 27, 28]),
 array([32, 33]),
 array([36, 37, 38]),
 array([42]),
 array([47]),
 array([52, 53]),
 array([57, 58]),
 array([61, 62, 63]),
 array([65, 66, 67, 68, 69]),
 array([70, 71, 72]),
 array([75, 76, 77, 78, 79]),
 array([80, 81, 82, 83]),
 array([87, 88]),
 array([90, 91, 92, 93, 94]),
 array([96, 97, 98, 99])]

Although in this case obviously you do not need to construct the intermediate masked array, you can just iterate through the rows of x and mask.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!