首先进行数据预处理,需要生成.tsv、.jpg文件
import matplotlib.pyplot as plt import numpy as np import os from tensorflow.examples.tutorials.mnist import input_data LOG_DIR = 'log' SPRITE_FILE = 'mnist_sprite.jpg' META_FIEL = "mnist_meta.tsv" # 存储索引和标签 def create_sprite_image(images): if isinstance(images, list): images = np.array(images) img_h = images.shape[1] img_w = images.shape[2] n_plots = int(np.ceil(np.sqrt(images.shape[0]))) spriteimage = np.ones((img_h * n_plots, img_w * n_plots)) for i in range(n_plots): for j in range(n_plots): this_filter = i * n_plots + j if this_filter < images.shape[0]: # 个数 this_img = images[this_filter] spriteimage[i * img_h:(i + 1) * img_h, j * img_w:(j + 1) * img_w] = this_img return spriteimage mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) to_visualise = 1 - np.reshape(mnist.test.images, (-1, 28, 28)) # 取反 sprite_image = create_sprite_image(to_visualise) path_for_mnist_sprites = os.path.join(LOG_DIR, SPRITE_FILE) plt.imsave(path_for_mnist_sprites, sprite_image, cmap='gray') plt.imshow(sprite_image, cmap='gray') path_for_mnist_metadata = os.path.join(LOG_DIR, META_FIEL) # 下面存储的东西很关键 with open(path_for_mnist_metadata, 'w') as f: f.write("Index\tLabel\n") for index, label in enumerate(mnist.test.labels): # 上边是(Index, label)是 f.write("%d\t%d\n" % (index, label))
mnist_inference:
import tensorflow as tf INPUT_NODE = 784 LAYER1_NODE = 500 OUTPUT_NODE = 10 def get_weight_variable(shape, regularizer): weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1)) if regularizer is not None: tf.add_to_collection('losses', regularizer(weights)) return weights def inference(input_tensor, regularizer): # 只有当训练和测试在一个程序时,才用reuse with tf.variable_scope('layer1'): weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer) biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0)) layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'): weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer) biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0)) layer2 = tf.matmul(layer1, weights) + biases return layer2
projector_MNIST
import tensorflow as tf import mnist_inference import os from tensorflow.contrib.tensorboard.plugins import projector # 加载用于生成PROJECTOR日志的帮助函数 from tensorflow.examples.tutorials.mnist import input_data BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.99 REGULARIZATION_RATE = 0.0001 TRAINING_STEPS = 10000 MOVING_AVERAGE_DECAY = 0.99 LOG_DIR = 'log' SPRITE_FILE = 'mnist_sprite.jpg' META_FIEL = "mnist_meta.tsv" TENSOR_NAME = "FINAL_LOGITS" def train(mnist): # 返回的是训练的数据,每行代表一个标签 # 输入数据的命名空间。 with tf.name_scope('input'): x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input') y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE) y = mnist_inference.inference(x, regularizer) global_step = tf.Variable(0, trainable=False) 9 # 处理滑动平均的命名空间。 with tf.name_scope("moving_average"): variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) # 计算损失函数的命名空间。 with tf.name_scope("loss_function"): cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1)) cross_entropy_mean = tf.reduce_mean(cross_entropy) loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses')) # 定义学习率、优化方法及每一轮执行训练的操作的命名空间。 with tf.name_scope("train_step"): learning_rate = tf.train.exponential_decay( LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY, staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step, variables_averages_op]): train_op = tf.no_op(name='train') # 训练模型。 with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(TRAINING_STEPS): xs, ys = mnist.train.next_batch(BATCH_SIZE) _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys}) if i % 1000 == 0: print("After %d training step(s), loss on training batch is %g." % (i, loss_value)) final_result = sess.run(y, feed_dict={x: mnist.test.images}) return final_result def visualisation(final_result): # 这里才是正儿八经的可视化 y = tf.Variable(final_result, name=TENSOR_NAME) # 用final_result对y初始化 summary_writer = tf.summary.FileWriter(LOG_DIR) config = projector.ProjectorConfig() # 通过projector.ProjectorConfig来帮助生成日志文件 embedding = config.embeddings.add() # 增加一个需要可视化的embedding结果 embedding.tensor_name = y.name # 指定这个embedding结果对应的Tensorflow变量名称,按照它来分类,y的结果时0-9 # Specify where you find the metadata embedding.metadata_path = META_FIEL # 注意这里也要.tsv文件 # Specify where you find the sprite (we will create this later) embedding.sprite.image_path = SPRITE_FILE # 这里同时也要.jpg文件 embedding.sprite.single_image_dim.extend([28, 28]) # Say that you want to visualise the embeddings projector.visualize_embeddings(summary_writer, config) # 这一步是写入 sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.save(sess, os.path.join(LOG_DIR, "model"), TRAINING_STEPS) summary_writer.close() def main(argv=None): mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) final_result = train(mnist) visualisation(final_result) if __name__ == '__main__': main()