Join two Spark mllib pipelines together

匆匆过客 提交于 2019-12-01 08:48:49

Pipeline or PipelineModel are valid PipelineStages, and as such can be combined in a single Pipeline. For example with:

from pyspark.ml import Pipeline
from pyspark.ml.feature import VectorAssembler

df = spark.createDataFrame([
    (1.0, 0, 1, 1, 0),
    (0.0, 1, 0, 0, 1)
], ("label", "x1", "x2", "x3", "x4"))

pipeline1 = Pipeline(stages=[
    VectorAssembler(inputCols=["x1", "x2"], outputCol="features1")
])

pipeline2 = Pipeline(stages=[
    VectorAssembler(inputCols=["x3", "x4"], outputCol="features2")
])

you can combine Pipelines:

Pipeline(stages=[
    pipeline1, pipeline2, 
    VectorAssembler(inputCols=["features1", "features2"], outputCol="features")
]).fit(df).transform(df)
+-----+---+---+---+---+---------+---------+-----------------+
|label|x1 |x2 |x3 |x4 |features1|features2|features         |
+-----+---+---+---+---+---------+---------+-----------------+
|1.0  |0  |1  |1  |0  |[0.0,1.0]|[1.0,0.0]|[0.0,1.0,1.0,0.0]|
|0.0  |1  |0  |0  |1  |[1.0,0.0]|[0.0,1.0]|[1.0,0.0,0.0,1.0]|
+-----+---+---+---+---+---------+---------+-----------------+

or pre-fitted PipelineModels:

model1 = pipeline1.fit(df)
model2 = pipeline2.fit(df)

Pipeline(stages=[
    model1, model2, 
    VectorAssembler(inputCols=["features1", "features2"], outputCol="features")
]).fit(df).transform(df)
+-----+---+---+---+---+---------+---------+-----------------+
|label| x1| x2| x3| x4|features1|features2|         features|
+-----+---+---+---+---+---------+---------+-----------------+
|  1.0|  0|  1|  1|  0|[0.0,1.0]|[1.0,0.0]|[0.0,1.0,1.0,0.0]|
|  0.0|  1|  0|  0|  1|[1.0,0.0]|[0.0,1.0]|[1.0,0.0,0.0,1.0]|
+-----+---+---+---+---+---------+---------+-----------------+

So the approach I would recommend is to join data beforehand, and fit and transform a whole DataFrame.

See also:

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!