Extract results from CrossValidator with paramGrid in pySpark

岁酱吖の 提交于 2019-12-01 08:46:46

问题


I train a Random Forest with pySpark. I want to have a csv with the results, per dot in the grid. My code is:

estimator = RandomForestRegressor()
evaluator = RegressionEvaluator()
paramGrid = ParamGridBuilder().addGrid(estimator.numTrees, [2,3])\
                              .addGrid(estimator.maxDepth, [2,3])\
                              .addGrid(estimator.impurity, ['variance'])\
                              .addGrid(estimator.featureSubsetStrategy, ['sqrt'])\
                              .build()
pipeline = Pipeline(stages=[estimator])

crossval = CrossValidator(estimator=pipeline,
                          estimatorParamMaps=paramGrid,
                          evaluator=evaluator,
                          numFolds=3)

cvModel = crossval.fit(result)

So I want a csv:

numTrees | maxDepth | impurityMeasure 

2            2          0.001 

2            3          0.00023

Etc

What is the best way to do this?


回答1:


You'll have to combine different bits of data:

  • Estimator ParamMaps extracted using getEstimatorParamMaps method.
  • Training metrics which can be retrieved using avgMetrics parameter.

First get names and values of all parameters declared in the map:

params = [{p.name: v for p, v in m.items()} for m in cvModel.getEstimatorParamMaps()]

Thane zip with metrics and convert to a data frame

import pandas as pd

pd.DataFrame.from_dict([
    {cvModel.getEvaluator().getMetricName(): metric, **ps} 
    for ps, metric in zip(params, cvModel.avgMetrics)
])


来源:https://stackoverflow.com/questions/51230726/extract-results-from-crossvalidator-with-paramgrid-in-pyspark

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!