什么是逻辑回归
逻辑回归虽然名字有回归,但解决的是分类问题。
逻辑回归既可以看做回归算法,也可以看做是分类算法,通常作为分类算法用,只可以解决二分类问题。
Sigmoid函数:
import numpy as np import matplotlib.pyplot as plt def sigmoid(t): return 1 / (1+np.exp(-t)) x=np.linspace(-10,10,500) y=sigmoid(x) plt.plot(x,y) plt.show()
逻辑回归的损失函数
推导过程这里就不赘述了,高等数学基本知识。
向量化:
逻辑回归的向量化梯度:
LogisticRegression.py:
import numpy as np from .metrics import accuracy_score class LogisticRegression: def __init__(self): """初始化Logistic Regression模型""" self.coef_ = None self.intercept_ = None self._theta = None def _sigmoid(self, t): return 1. / (1. + np.exp(-t)) def fit(self, X_train, y_train, eta=0.01, n_iters=1e4): """根据训练数据集X_train, y_train, 使用梯度下降法训练Logistic Regression模型""" assert X_train.shape[0] == y_train.shape[0], \ "the size of X_train must be equal to the size of y_train" def J(theta, X_b, y): y_hat = self._sigmoid(X_b.dot(theta)) try: return - np.sum(y*np.log(y_hat) + (1-y)*np.log(1-y_hat)) / len(y) except: return float('inf') def dJ(theta, X_b, y): return X_b.T.dot(self._sigmoid(X_b.dot(theta)) - y) / len(y) def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8): theta = initial_theta cur_iter = 0 while cur_iter < n_iters: gradient = dJ(theta, X_b, y) last_theta = theta theta = theta - eta * gradient if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon): break cur_iter += 1 return theta X_b = np.hstack([np.ones((len(X_train), 1)), X_train]) initial_theta = np.zeros(X_b.shape[1]) self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters) self.intercept_ = self._theta[0] self.coef_ = self._theta[1:] return self def predict_proba(self, X_predict): """给定待预测数据集X_predict,返回表示X_predict的结果概率向量""" assert self.intercept_ is not None and self.coef_ is not None, \ "must fit before predict!" assert X_predict.shape[1] == len(self.coef_), \ "the feature number of X_predict must be equal to X_train" X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict]) return self._sigmoid(X_b.dot(self._theta)) def predict(self, X_predict): """给定待预测数据集X_predict,返回表示X_predict的结果向量""" assert self.intercept_ is not None and self.coef_ is not None, \ "must fit before predict!" assert X_predict.shape[1] == len(self.coef_), \ "the feature number of X_predict must be equal to X_train" proba = self.predict_proba(X_predict) return np.array(proba >= 0.5, dtype='int') def score(self, X_test, y_test): """根据测试数据集 X_test 和 y_test 确定当前模型的准确度""" y_predict = self.predict(X_test) return accuracy_score(y_test, y_predict) def __repr__(self): return "LogisticRegression()"
使用鸢尾花数据集,因为有三个特征,而逻辑回归只适合二分类问题,所以我们取前2个特征实验:
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets iris=datasets.load_iris() X=iris.data y=iris.target X=X[y<2,:2] y=y[y<2] plt.scatter(X[y==0,0],X[y==0,1],color="red") plt.scatter(X[y==1,0],X[y==1,1],color="blue") plt.show()
%run f:\python3玩转机器学习\逻辑回归\LogisticRegression.py from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=666) log_reg=LogisticRegression() log_reg.fit(X_train,y_train) log_reg.score(X_test,y_test) log_reg.predict_proba(X_test) log_reg.predict(X_test)
准确率100%。
决策边界
绘制决策边界:
def x2(x1): return (-log_reg.coef_[0] * x1 - log_reg.intercept_)/log_reg.coef_[1] x1_plot=np.linspace(4,8,1000) x2_plot=x2(x1_plot) plt.scatter(X[y==0,0],X[y==0,1],color="red") plt.scatter(X[y==1,0],X[y==1,1],color="blue") plt.plot(x1_plot,x2_plot) plt.show()
其中那个分类错误的红点是训练数据集中的点。
不规则的决策边界绘制方法:
如图,遍历每个点,看它属于哪个类。
def plot_decision_boundary(model, axis): x0, x1 = np.meshgrid( np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1), np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1), ) X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new) zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap) plot_decision_boundary(log_reg, axis=[4, 7.5, 1.5, 4.5]) plt.scatter(X[y==0,0], X[y==0,1]) plt.scatter(X[y==1,0], X[y==1,1]) plt.show()
KNN的决策边界:
from sklearn.neighbors import KNeighborsClassifier knn_clf=KNeighborsClassifier() knn_clf.fit(X_train,y_train) knn_clf.score(X_test,y_test) plot_decision_boundary(knn_clf,axis=[4,7.5,1.5,4.5]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()
knn_clf_all=KNeighborsClassifier() knn_clf_all.fit(iris.data[:,:2],iris.target) plot_decision_boundary(knn_clf_all,axis=[4,8,1.5,4.5]) plt.scatter(iris.data[iris.target==0,0],iris.data[iris.target==0,1]) plt.scatter(iris.data[iris.target==1,0],iris.data[iris.target==1,1]) plt.scatter(iris.data[iris.target==2,0],iris.data[iris.target==2,1]) plt.show()
发现黄蓝的决策边界很陡峭,这是因为KNN的k越小,那么模型越复杂,可能会过拟合。
取k=50:
knn_clf_all=KNeighborsClassifier(n_neighbors=50) knn_clf_all.fit(iris.data[:,:2],iris.target) plot_decision_boundary(knn_clf_all,axis=[4,8,1.5,4.5]) plt.scatter(iris.data[iris.target==0,0],iris.data[iris.target==0,1]) plt.scatter(iris.data[iris.target==1,0],iris.data[iris.target==1,1]) plt.scatter(iris.data[iris.target==2,0],iris.data[iris.target==2,1]) plt.show()
在逻辑回归中使用多项式特征
import numpy as np import matplotlib.pyplot as plt np.random.seed(666) X=np.random.normal(0,1,size=(200,2)) y=np.array(X[:,0]**2+X[:,1]**2<1.5,dtype='int') plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()
%run f:\python3玩转机器学习\逻辑回归\LogisticRegression.py log_reg=LogisticRegression() log_reg.fit(X,y) log_reg.score(X,y) def plot_decision_boundary(model, axis): x0, x1 = np.meshgrid( np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1), np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1), ) X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new) zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap) plot_decision_boundary(log_reg,axis=[-4,4,-4,4]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()
发现准确率很低,这是因为逻辑回归默认是用一条直线分类的,我们用多项式试一下:
from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import StandardScaler def PolynomialLogisticRegression(degree): return Pipeline([ ('poly',PolynomialFeatures(degree=degree)), ('std_scaler',StandardScaler()), ('log_reg',LogisticRegression()) ]) poly_log_reg=PolynomialLogisticRegression(degree=2) poly_log_reg.fit(X,y) poly_log_reg.score(X,y) plot_decision_boundary(poly_log_reg,axis=[-4,4,-4,4]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()
用二次多项式准确率就比较高了,我们再试一下20次多项式:
poly_log_reg20=PolynomialLogisticRegression(degree=20) poly_log_reg20.fit(X,y) poly_log_reg20.score(X,y) plot_decision_boundary(poly_log_reg20,axis=[-4,4,-4,4]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()
形状及其不规则,明显是过拟合了,我们可以降低多项式的级数,当然使用正则化是更好的选择。
scikit-learn中的逻辑回归
逻辑回归的正则化:
import numpy as np import matplotlib.pyplot as plt np.random.seed(666) X=np.random.normal(0,1,size=(200,2)) y=np.array(X[:,0]**2+X[:,1]<1.5,dtype='int') for _ in range(20): #添加噪音 y[np.random.randint(200)]=1 plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()
用线性逻辑回归:
from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=666) from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression() log_reg.fit(X_train,y_train) log_reg.score(X_train,y_train) log_reg.score(X_test,y_test)
发现准确率较低,因为我们造的数据是抛物线。绘制一下:
def plot_decision_boundary(model, axis): x0, x1 = np.meshgrid( np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1), np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1), ) X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new) zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap) plot_decision_boundary(log_reg,axis=[-4,4,-4,4]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()
用二次多项式逻辑回归:
from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import StandardScaler def PolynomialLogisticRegression(degree): return Pipeline([ ('poly',PolynomialFeatures(degree=degree)), ('std_scaler',StandardScaler()), ('log_reg',LogisticRegression()) ]) poly_log_reg=PolynomialLogisticRegression(degree=2) poly_log_reg.fit(X_train,y_train)
返回的penalty就是正则化方式,默认是l2正则,即岭回归。
poly_log_reg.score(X_train,y_train) poly_log_reg.score(X_test,y_test)
发现准确率比较高了。
plot_decision_boundary(poly_log_reg,axis=[-4,4,-4,4]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()
20次多项式逻辑回归:
poly_log_reg2=PolynomialLogisticRegression(degree=20) poly_log_reg2.fit(X_train,y_train) poly_log_reg2.score(X_train,y_train) poly_log_reg2.score(X_test,y_test) plot_decision_boundary(poly_log_reg2,axis=[-4,4,-4,4]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()
发现准确率下降了,根据图就可以看出过拟合了,图形很复杂,但因数据比较弱,所以准确率降低的比较少。
令C=0.1,l2正则:
def PolynomialLogisticRegression(degree,C):#C是比重 return Pipeline([ ('poly',PolynomialFeatures(degree=degree)), ('std_scaler',StandardScaler()), ('log_reg',LogisticRegression(C=C)) ]) poly_log_reg3=PolynomialLogisticRegression(degree=20,C=0.1) poly_log_reg3.fit(X_train,y_train) poly_log_reg3.score(X_train,y_train) poly_log_reg3.score(X_test,y_test) plot_decision_boundary(poly_log_reg3,axis=[-4,4,-4,4]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()
图形比上面的要规则一点,但准确率较低。
令C=0.1,换成l1正则:
def PolynomialLogisticRegression(degree,C,penalty='l2'):#C是比重 return Pipeline([ ('poly',PolynomialFeatures(degree=degree)), ('std_scaler',StandardScaler()), ('log_reg',LogisticRegression(C=C,penalty=penalty)) ]) poly_log_reg4=PolynomialLogisticRegression(degree=20,C=0.1,penalty='l1') poly_log_reg4.fit(X_train,y_train) poly_log_reg4.score(X_train,y_train) poly_log_reg4.score(X_test,y_test) plot_decision_boundary(poly_log_reg4,axis=[-4,4,-4,4]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()
虽然准确率降低了,但决策边界比较符合我们创造的抛物线了,这是因为l1正则(lasso回归)会尽可能使一些theta为0,起到特征选择。
当然,C这个超参数也可以通过网格搜索来寻找。
OvR与OvO
解决多分类问题:OvR、OvO
OvR(One vs Rest):
OvO(One vs One):
虽然OvO更费时,但准确率要高。
使用鸢尾花数据集来测试:
先取前两个特征:
ovr:
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets iris=datasets.load_iris() X=iris.data[:,:2] y=iris.target from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=666) from sklearn.linear_model import LogisticRegression log_reg=LogisticRegression(multi_class='ovr') log_reg.fit(X_train,y_train) log_reg.score(X_test,y_test)
def plot_decision_boundary(model, axis): x0, x1 = np.meshgrid( np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1), np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1), ) X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new) zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap) plot_decision_boundary(log_reg,axis=[4,8.5,1.5,4.5]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.scatter(X[y==2,0],X[y==2,1]) plt.show()
ovo:
log_reg2=LogisticRegression(multi_class='multinomial',solver="newton-cg")#ovo必须换求解方法 log_reg2.fit(X_train,y_train) log_reg2.score(X_test,y_test)
可见ovo准确率是比ovr高的。
我们再用所有特征测试一下:
X=iris.data y=iris.target X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=666) log_reg=LogisticRegression() log_reg.fit(X_train,y_train) log_reg.score(X_test,y_test) log_reg2=LogisticRegression(multi_class='multinomial',solver="newton-cg") log_reg2.fit(X_train,y_train) log_reg2.score(X_test,y_test)
ovo准确率达到了1。
其实scikit-learn中有OVR和OVO这两个类,以便所有二分类分类器都可以使用:
ovr:
from sklearn.multiclass import OneVsRestClassifier ovr=OneVsRestClassifier(log_reg) ovr.fit(X_train,y_train) ovr.score(X_test,y_test)
from sklearn.multiclass import OneVsOneClassifier ovo=OneVsOneClassifier(log_reg) ovo.fit(X_train,y_train) ovo.score(X_test,y_test)