I am looking for a function similar to those in clojure.walk that have an inner
function that takes as argument :
- not a key and a value, as is the case with the clojure.walk/walk function
- but the vector of keys necessary to access a value from the top-level data structure.
- recursively traverses all data
Example :
;; not good since it takes `[k v]` as argument instead of `[path v]`, and is not recursive.
user=> (clojure.walk/walk (fn [[k v]] [k (* 10 v)]) identity {:a 1 :b {:c 2}})
;; {:a 10, :c 30, :b 20}
;; it should receive as arguments instead :
[[:a] 1]
[[:b :c] 2]
Note:
- It should work with arrays too, using the keys 0, 1, 2... (just like in
get-in
). - I don't really care about the
outer
parameter, if that allows to simplify the code.
Currently learning clojure, I tried this as an exercise. I however found it quite tricky to implement it directly as a walk down the tree that applies the inner function as it goes.
To achieve the result you are looking for, I split the task in 2:
- First transform the nested structure into a dictionary with the path as key, and the value,
- Then map the inner function over, or reduce with the outer function.
My implementation:
;; Helper function to have vector's indexes work like for get-in
(defn- to-indexed-seqs [coll]
(if (map? coll)
coll
(map vector (range) coll)))
;; Flattening the tree to a dict of (path, value) pairs that I can map over
;; user> (flatten-path [] {:a {:k1 1 :k2 2} :b [1 2 3]})
;; {[:a :k1] 1, [:a :k2] 2, [:b 0] 1, [:b 1] 2, [:b 2] 3}
(defn- flatten-path [path step]
(if (coll? step)
(->> step
to-indexed-seqs
(map (fn [[k v]] (flatten-path (conj path k) v)))
(into {}))
[path step]))
;; Some final glue
(defn path-walk [f coll]
(->> coll
(flatten-path [])
(map #(apply f %))))
;; user> (println (clojure.string/join "\n" (path-walk #(str %1 " - " %2) {:a {:k1 1 :k2 2} :b [1 2 3]})))
;; [:a :k1] - 1
;; [:a :k2] - 2
;; [:b 0] - 1
;; [:b 1] - 2
;; [:b 2] - 3
It turns out that Stuart Halloway published a gist that could be of some use (it uses a protocol, which makes it extensible as well) :
(ns user)
(def app
"Intenal Helper"
(fnil conj []))
(defprotocol PathSeq
(path-seq* [form path] "Helper for path-seq"))
(extend-protocol PathSeq
java.util.List
(path-seq*
[form path]
(->> (map-indexed
(fn [idx item]
(path-seq* item (app path idx)))
form)
(mapcat identity)))
java.util.Map
(path-seq*
[form path]
(->> (map
(fn [[k v]]
(path-seq* v (app path k)))
form)
(mapcat identity)))
java.util.Set
(path-seq*
[form path]
(->> (map
(fn [v]
(path-seq* v (app path v)))
form)
(mapcat identity)))
java.lang.Object
(path-seq* [form path] [[form path]])
nil
(path-seq* [_ path] [[nil path]]))
(defn path-seq
"Returns a sequence of paths into a form, and the elements found at
those paths. Each item in the sequence is a map with :path
and :form keys. Paths are built based on collection type: lists
by position, maps by key, and sets by value, e.g.
(path-seq [:a [:b :c] {:d :e} #{:f}])
({:path [0], :form :a}
{:path [1 0], :form :b}
{:path [1 1], :form :c}
{:path [2 :d], :form :e}
{:path [3 :f], :form :f})
"
[form]
(map
#(let [[form path] %]
{:path path :form form})
(path-seq* form nil)))
(comment
(path-seq [:a [:b :c] {:d :e} #{:f}])
;; finding nils hiding in data structures:
(->> (path-seq [:a [:b nil] {:d :e} #{:f}])
(filter (comp nil? :form)))
;; finding a nil hiding in a Datomic transaction
(->> (path-seq {:db/id 100
:friends [{:firstName "John"}
{:firstName nil}]})
(filter (comp nil? :form)))
)
Note : in my case I could also have used Specter
, so if you are reading this, you may want to check it out as well.
There is also https://github.com/levand/contextual/
(def node (:b (first (root :a))))
(= node {:c 1}) ;; => true
(c/context node) ;; => [:a 0 :b]
来源:https://stackoverflow.com/questions/33594375/clojure-walk-with-path