Sum of rows based on column value

限于喜欢 提交于 2019-11-26 12:07:18

问题


I want to sum rows that have the same value in one column:

> df <- data.frame(\"1\"=c(\"a\",\"b\",\"a\",\"c\",\"c\"), \"2\"=c(1,5,3,6,2), \"3\"=c(3,3,4,5,2))
> df
  X1 X2 X3
1  a  1  3
2  b  5  3
3  a  3  4
4  c  6  5
5  c  2  2

For one column (X2), the data can be aggregated to get the sums of all rows that have the same X1 value:

> ddply(df, .(X1), summarise, X2=sum(X2))
  X1 X2
1  a  4
2  b  5
3  c  8

How do I do the same for X3 and an arbitrary number of other columns except X1?

This is the result I want:

  X1 X2 X3
1  a  4  7
2  b  5  3
3  c  8  7

回答1:


ddply(df, "X1", numcolwise(sum))

see ?numcolwise for details and examples.




回答2:


aggregate can easily do this with the formula interface:

aggregate(. ~ X1, data=df, FUN=sum)
##   X1 X2 X3
## 1  a  4  7
## 2  b  5  3
## 3  c  8  7

Equivalently:

aggregate(cbind(X2, X3) ~ X1, data=df, FUN=sum)



回答3:


aggregate is a great function for these sorts of things:

aggregate(df[,-1],df["X1"],sum)

  X1 X2 X3
1  a  4  7
2  b  5  3
3  c  8  7

And a base R version of the numcolwise method from plyr:

aggregate(df[,sapply(df,is.numeric)],df["X1"],sum)



回答4:


A data.table solution for memory efficiency and coding elegance

library(data.table)
DT <- data.table(df)


DT[, lapply(.SD, sum), by = X1]

.SD is the subset of the data.table for each group defined by the values of X1. There are 3 helpful vignettes associated with the data.table package.



来源:https://stackoverflow.com/questions/15047742/sum-of-rows-based-on-column-value

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!