hashMap 1.8.0_91 浅析

你说的曾经没有我的故事 提交于 2019-12-01 02:25:41

我对红黑树不是很了解,所以解说不是很好。还有remove等方法没写,以后再说。linkedHashMap,treeMap,也在说

hashMap由数组、链表、红黑树组成。

why?

数组,查找快!只要知道下标,Array[index]就查到了,但是向指定下标插入一个值,当该位置有值(我称之为原值)时,则要考虑原值的去留问题!

链表,插入、删除快!只要更改prev、next的指向即可,但是,查找慢,得一个个遍历!

红黑树,插入、查找、删除都快!但是比较复杂。后面有时间,我会慢慢搞透他!

如下图所示:

图一 hashMap基础数据结构

    1. 概述

    hashMap由  transient Node<K,V>[] table (这就是数组) 组成。Node包含键值等属性

    /**
     * 基本的桶节点,大多数实体都会用到:存储的<key,value>对应Node的key,value
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     */
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        
        ...

     }

    treeNode是红黑树的结点,是Node的子类

    /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     */
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;

        ...
     }

   2. 属性

    /**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     */
    transient Node<K,V>[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     *
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    final float loadFactor;

    3. 方法

    3.1 构造方法

     一共有4种构造方法,DEFAULT_LOAD_FACTOR = 0.75f

public HashMap(int initialCapacity, float loadFactor)         //指定table[]初始大小和负载因子

public HashMap(int initialCapacity) {                         //指定table[]初始大小
	this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

public HashMap() {                                            //无参构造函数
	this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

public HashMap(Map<? extends K, ? extends V> m) {             //根据旧map,生成新map
	this.loadFactor = DEFAULT_LOAD_FACTOR;
	putMapEntries(m, false);
}

重点看第一种

public HashMap(int initialCapacity, float loadFactor) {                  //初始化大小 和 负载因子
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)                             //MAXIMUM_CAPACITY = 1 << 30
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

调用了tableSizeFor(initialCapacity),作用是返回>=初始化大小的  最小的  2的n次方。如1->2,15->16,32->32...上图中将tableSize赋给threshold,在后期会付给table数组的初始化大小——table[]的size始终是2的n次方!这便于快速定位数组的下标(   key.hashCode&(table.size-1)  )

/**
 * Returns a power of two size for the given target capacity.
 */
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;//无符号右移1位(2进制)
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

     4种构造方法,有三种未初始化table数组,这是一种懒加载机制——(并不需要一开始就创建数组,而是需要用到他的时候创建,比如put)

        3.2 put

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     * 插入键 - 值,返回该键对应的 旧值
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);//哈希值与他的无符号高16位 亦或
    }
    /**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none(如果该key存在对应的value,则修改,并返回旧值。如果不存在,插入,并返回null)
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)//用本地变量tab指向全局table[],
            n = (tab = resize()).length;                   //如果table[]没有初始化,调用resize初始化,n为table的长度
        if ((p = tab[i = (n - 1) & hash]) == null)         //(n - 1) & hash,代表该key在table中的下标,记为 位置A,p指向位置A的,唯一的Node,或链表、红黑树的头结点
            tab[i] = newNode(hash, key, value, null);      //如果位置A没有值,则新建一个Node,next=null
        else {                                             //如果位置A有值,则根据实际情况:1.修改 2.插入链表 3.插入红黑树
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;                                    //key与p.key相同,做修改操作(此时,p可能是单节点,或链表、树的头,但是不重要,由判断条件知道,K要重写equals和hashCode方法)
            else if (p instanceof TreeNode)               //key与p.key不相同,且p是红黑树的节点(头结点)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);//修改或插入红黑树
            else {                                        //p是链表的(头)结点
                for (int binCount = 0; ; ++binCount) {    //遍历链表
                    if ((e = p.next) == null) {           //到了链表的尾部-tail
                        p.next = newNode(hash, key, value, null);//创建一个新节点到尾部
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st(链表长度大于等于8时,将链表转成红黑树)
                            treeifyBin(tab, hash);                //转成红黑树,或扩容
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))//key完全相同,则替换值
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);                // Callbacks to allow LinkedHashMap post-actions
                return oldValue;
            }
        }
        ++modCount;                                //走到这一步、说明有新节点加入。modCount,本map的修改次数,便利时用到,防止concurrentModifition
        if (++size > threshold)                    //如果map的大小超过阀值,扩容(1.7版 会rehash)
            resize();
        afterNodeInsertion(evict);                 // Callbacks to allow LinkedHashMap post-actions
        return null;
    }

    putTreeVal 不太懂

    /**
     * Tree version of putVal.
     */
    final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                   int h, K k, V v) {
        Class<?> kc = null;
        boolean searched = false;
        TreeNode<K,V> root = (parent != null) ? root() : this;
        for (TreeNode<K,V> p = root;;) {
            int dir, ph; K pk;
            if ((ph = p.hash) > h)
                dir = -1;
            else if (ph < h)
                dir = 1;
            else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                return p;
            else if ((kc == null &&
                      (kc = comparableClassFor(k)) == null) ||
                     (dir = compareComparables(kc, k, pk)) == 0) {
                if (!searched) {
                    TreeNode<K,V> q, ch;
                    searched = true;
                    if (((ch = p.left) != null &&
                         (q = ch.find(h, k, kc)) != null) ||
                        ((ch = p.right) != null &&
                         (q = ch.find(h, k, kc)) != null))
                        return q;
                }
                dir = tieBreakOrder(k, pk);
            }
    
            TreeNode<K,V> xp = p;
            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                Node<K,V> xpn = xp.next;
                TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                if (dir <= 0)
                    xp.left = x;
                else
                    xp.right = x;
                xp.next = x;
                x.parent = x.prev = xp;
                if (xpn != null)
                    ((TreeNode<K,V>)xpn).prev = x;
                moveRootToFront(tab, balanceInsertion(root, x));
                return null;
            }
        }
    }

    不太懂

    /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

    小总结:put<key, value>操作,包含着插入、修改两重语义。当map中存在该key时,执行修改操作,比较简单。当map中不存在该key,执行插入操作,该操作会导致插入链表 || map扩容 || 链表转红黑树 || 插入红黑树,并修改全局变量modCount,如果遍历(for循环)map时执行put操作,可能会导致concurrentModifitionException,可以使用concurrentHashMap代替,后期会讲它

     

        3.3 get方法

        public V get(Object key) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        }
    
        final Node<K,V> getNode(int hash, Object key) {
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {   //hashMap通过(length - 1) & hash快速定位,这是数组的优点
                if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))//如果是链表的头结点/树的根节点,直接返回
                    return first;
                if ((e = first.next) != null) {
                    if (first instanceof TreeNode)                             //是树节点,则通过树的方式(左子节点-右子节点-左...)返回,
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);                            //是链表,则遍历(链表最大长度为8)
                }
            }
            return null;
        }
    
    
          /**
           * Calls find for root node.
           */
           final TreeNode<K,V> getTreeNode(int h, Object k) {
               return ((parent != null) ? root() : this).find(h, k, null);    //先获取树的root结点,然后调用find方法
           }
    
            /**
             * Returns root of tree containing this node.
             */
            final TreeNode<K,V> root() {
                for (TreeNode<K,V> r = this, p;;) {
                    if ((p = r.parent) == null)
                        return r;
                    r = p;
                }
            }
    
            /**
             * Finds the node starting at root p with the given hash and key.
             * The kc argument caches comparableClassFor(key) upon first use
             * comparing keys.
             */
            final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
                TreeNode<K,V> p = this;
                do {
                    int ph, dir; K pk;                                       //ph-当前结点的hash
                    TreeNode<K,V> pl = p.left, pr = p.right, q;              //hash = (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16)
                    if ((ph = p.hash) > h)     //如果h<当前结点的hash,p = p的左子节点                                     
                        p = pl;
                    else if (ph < h)           //如果h>当前结点的hash,p = p的右子节点
                        p = pr;
                    else if ((pk = p.key) == k || (k != null && k.equals(pk)))//key相同,直接返回
                        return p;
                    else if (pl == null)
                        p = pr;
                    else if (pr == null)
                        p = pl;
                    else if ((kc != null ||
                              (kc = comparableClassFor(k)) != null) &&
                             (dir = compareComparables(kc, k, pk)) != 0)
                        p = (dir < 0) ? pl : pr;
                    else if ((q = pr.find(h, k, kc)) != null)
                        return q;
                    else
                        p = pl;
                } while (p != null);
                return null;
            }

    上面用到两个方法,很有意思,可以自己意会

    /**
     * Returns x's Class if it is of the form "class C implements
     * Comparable<C>", else null.
     */
    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                        ((p = (ParameterizedType)t).getRawType() ==
                         Comparable.class) &&
                        (as = p.getActualTypeArguments()) != null &&
                        as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }
    /**
     * Returns k.compareTo(x) if x matches kc (k's screened comparable
     * class), else 0.
     */
    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

     

    易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
    该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!