Why can't I convert 'char**' to a 'const char* const*' in C?

无人久伴 提交于 2019-11-26 11:46:42
Kevin

I had this same problem a few years ago and it irked me to no end.

The rules in C are more simply stated (i.e. they don't list exceptions like converting char** to const char*const*). Consequenlty, it's just not allowed. With the C++ standard, they included more rules to allow cases like this.

In the end, it's just a problem in the C standard. I hope the next standard (or technical report) will address this.

To be considered compatible, the source pointer should be const in the immediately anterior indirection level. So, this will give you the warning in GCC:

char **a;
const char* const* b = a;

But this won't:

const char **a;
const char* const* b = a;

Alternatively, you can cast it:

char **a;
const char* const* b = (const char **)a;

You would need the same cast to invoke the function f() as you mentioned. As far as I know, there's no way to make an implicit conversion in this case (except in C++).

> However, in pure C, this still gives a warning, and I don't understand why

You've already identified the problem -- this code is not const-correct. "Const correct" means that, except for const_cast and C-style casts removing const, you can never modify a const object through those const pointers or references.

The value of const-correctness -- const is there, in large part, to detect programmer errors. If you declare something as const, you're stating that you don't think it should be modified -- or at least, those with access to the const version only should not be able to modifying it. Consider:

void foo(const int*);

As declared, foo doesn't have permission to modify the integer pointed to by its argument.

If you're not sure why the code you posted isn't const-correct, consider the following code, only slightly different from HappyDude's code:

char *y;

char **a = &y; // a points to y
const char **b = a; // now b also points to y

// const protection has been violated, because:

const char x = 42; // x must never be modified
*b = &x; // the type of *b is const char *, so set it 
         //     with &x which is const char* ..
         //     ..  so y is set to &x... oops;
*y = 43; // y == &x... so attempting to modify const 
         //     variable.  oops!  undefined behavior!
cout << x << endl;

Non-const types can only convert to const types in particular ways to prevent any circumvention of 'const' on a data-type without an explicit cast.

Objects initially declared const are particularly special -- the compiler can assume they never change. However, if 'b' can be assigned the value of 'a' without a cast, then you could inadvertantly attempt to modify a const variable. This would not only break the check you asked the compiler to make, to disallow you from changing that variables value -- it would also allow you break the compiler optimizations!

On some compilers, this will print '42', on some '43', and others, the program will crash.

Edit-add:

HappyDude: Your comment is spot on. Either the C langauge, or the C compiler you're using, treats const char * const * fundamentally differently than the C++ language treats it. Perhaps consider silencing the compiler warning for this source line only.

Edit-delete: removed typo

This is annoying, but if you're willing to add another level of redirection, you can often do the following to push down into the pointer-to-pointer:

char c = 'c';
char *p = &c;
char **a = &p;

const char *bi = *a;
const char * const * b = &bi;

It has a slightly different meaning, but it's usually workable, and it doesn't use a cast.

I'm not able to get an error when implicitly casting char** to const char * const *, at least on MSVC 14 (VS2k5) and g++ 3.3.3. GCC 3.3.3 issues a warning, which I'm not exactly sure if it is correct in doing.

test.c:

#include <stdlib.h> 
#include <stdio.h>
void foo(const char * const * bar)
{
    printf("bar %s null\n", bar ? "is not" : "is");
}

int main(int argc, char **argv) 
{
    char **x = NULL; 
    const char* const*y = x;
    foo(x);
    foo(y);
    return 0; 
}

Output with compile as C code: cl /TC /W4 /Wp64 test.c

test.c(8) : warning C4100: 'argv' : unreferenced formal parameter
test.c(8) : warning C4100: 'argc' : unreferenced formal parameter

Output with compile as C++ code: cl /TP /W4 /Wp64 test.c

test.c(8) : warning C4100: 'argv' : unreferenced formal parameter
test.c(8) : warning C4100: 'argc' : unreferenced formal parameter

Output with gcc: gcc -Wall test.c

test2.c: In function `main':
test2.c:11: warning: initialization from incompatible pointer type
test2.c:12: warning: passing arg 1 of `foo' from incompatible pointer type

Output with g++: g++ -Wall test.C

no output

Skizz

I'm pretty sure that the const keyword does not imply the data can't be changed/is constant, only that the data will be treated as read-only. Consider this:

const volatile int *const serial_port = SERIAL_PORT;

which is valid code. How can volatile and const co-exist? Simple. volatile tells the compiler to always read the memory when using the data and const tells the compiler to create an error when an attempt is made to write to the memory using the serial_port pointer.

Does const help the compiler's optimiser? No. Not at all. Because constness can be added to and removed from data through casting, the compiler cannot figure out if const data really is constant (since the cast could be done in a different translation unit). In C++ you also have the mutable keyword to complicate matters further.

char *const p = (char *) 0xb000;
//error: p = (char *) 0xc000;
char **q = (char **)&p;
*q = (char *)0xc000; // p is now 0xc000

What happens when an attempt is made to write to memory that really is read only (ROM, for example) probably isn't defined in the standard at all.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!