Is there a convenient way to apply a lookup table to a large array in numpy?

孤街浪徒 提交于 2019-11-30 16:26:28

问题


I’ve got an image read into numpy with quite a few pixels in my resulting array.

I calculated a lookup table with 256 values. Now I want to do the following:

for i in image.rows:
    for j in image.cols:
        mapped_image[i,j] = lut[image[i,j]]

Yep, that’s basically what a lut does.
Only problem is: I want to do it efficient and calling that loop in python will have me waiting for some seconds for it to finish.

I know of numpy.vectorize(), it’s simply a convenience function that calls the same python code.


回答1:


You can just use image to index into lut if lut is 1D.
Here's a starter on indexing in NumPy:
http://www.scipy.org/Tentative_NumPy_Tutorial#head-864862d3f2bb4c32f04260fac61eb4ef34788c4c

In [54]: lut = np.arange(10) * 10

In [55]: img = np.random.randint(0,9,size=(3,3))

In [56]: lut
Out[56]: array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])

In [57]: img
Out[57]: 
array([[2, 2, 4],
       [1, 3, 0],
       [4, 3, 1]])

In [58]: lut[img]
Out[58]: 
array([[20, 20, 40],
       [10, 30,  0],
       [40, 30, 10]])

Mind also the indexing starts at 0




回答2:


TheodrosZelleke's answer in correct, but I just wanted to add a little undocumented wisdom to it. Numpy provides a function, np.take, which according to the documentation "does the same thing as fancy indexing."

Well, almost, but not quite the same:

>>> import numpy as np
>>> lut = np.arange(256)
>>> image = np.random.randint(256, size=(5000, 5000))
>>> np.all(lut[image] == np.take(lut, image))
True
>>> import timeit
>>> timeit.timeit('lut[image]',
...               'from __main__ import lut, image', number=10)
4.369504285407089
>>> timeit.timeit('np.take(lut, image)',
...               'from __main__ import np, lut, image', number=10)
1.3678052776554637

np.take is about 3x faster! In my experience, when using 3D luts to convert images from RGB to other color spaces, adding logic to convert the 3D look-up to a 1D flattened look-up allows a x10 speed up.



来源:https://stackoverflow.com/questions/14448763/is-there-a-convenient-way-to-apply-a-lookup-table-to-a-large-array-in-numpy

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!