Guidelines to write fast code for PyPy's JIT

天大地大妈咪最大 提交于 2019-11-30 12:45:50

问题


PyPy's JIT can make Python code execute much faster than CPython. Are there a set of guidelines for writing code that can be optimised better by the JIT compiler? For example, Cython can compile some static code into C++, and it has guidelines to write efficient code. Are there a set of good practices for PyPy? I know that the PyPy project has guidelines for including hints while writing your own JIT-enabled interpreters for other dynamic languages, but that is not relevant to most end users of the framework, who are simply using the interpreter. Questions I am wondering about include:

  1. Packaging a script into functions
  2. Explicitly deleting variables
  3. Possible ways of giving, or hinting variable types
  4. Writing loops a certain way

回答1:


PyPy wiki's at BitBucket has a section on JIT Friendliness. Some blog posts offer further advice on making code run fast in PyPy, but AFAIK the idea is that idiomatic code that doesn't force interpreting/realizing frames should be fast and is a bug if it isn't.

I know that for 3, some "assert x > 0" or similar statements can be useful, but I don't remember where I saw that. I also believe I've seen some suggestion about refactoring conditional-paths-in-loops related to 4 (edit: this seems to be outdated now).

Here's a thread with some related discussion. You can check how well the JIT is working with your code with jitviewer, but it's somewhat advanced. Joining #pypy on Freenode will get you help with jitviewer and your particular code.



来源:https://stackoverflow.com/questions/5318157/guidelines-to-write-fast-code-for-pypys-jit

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!