Fitting lognormal distribution using Scipy vs Matlab

烂漫一生 提交于 2019-11-30 10:20:52

There is a bug in the fit method in scipy 0.9.0 that has been fixed in later versions of scipy.

The output of the script below should be:

Explicit formula:   mu = 4.99203450, sig = 0.81691086
Fit log(x) to norm: mu = 4.99203450, sig = 0.81691086
Fit x to lognorm:   mu = 4.99203468, sig = 0.81691081

but with scipy 0.9.0, it is

Explicit formula:   mu = 4.99203450, sig = 0.81691086
Fit log(x) to norm: mu = 4.99203450, sig = 0.81691086
Fit x to lognorm:   mu = 4.23197270, sig = 1.11581240

The following test script shows three ways to get the same results:

import numpy as np
from scipy import stats


def lognfit(x, ddof=0):
    x = np.asarray(x)
    logx = np.log(x)
    mu = logx.mean()
    sig = logx.std(ddof=ddof)
    return mu, sig


# A simple data set for easy reproducibility
x = np.array([50., 50, 100, 200, 200, 300, 500])

# Explicit formula
my_mu, my_sig = lognfit(x)

# Fit a normal distribution to log(x)
norm_mu, norm_sig = stats.norm.fit(np.log(x))

# Fit the lognormal distribution
lognorm_sig, _, lognorm_expmu = stats.lognorm.fit(x, floc=0)

print "Explicit formula:   mu = %10.8f, sig = %10.8f" % (my_mu, my_sig)
print "Fit log(x) to norm: mu = %10.8f, sig = %10.8f" % (norm_mu, norm_sig)
print "Fit x to lognorm:   mu = %10.8f, sig = %10.8f" % (np.log(lognorm_expmu), lognorm_sig)

With the option ddof=1 in the std. dev. calculation to use the unbiased variance estimation:

In [104]: x
Out[104]: array([  50.,   50.,  100.,  200.,  200.,  300.,  500.])

In [105]: lognfit(x, ddof=1)
Out[105]: (4.9920345004312647, 0.88236457185021866)

There is a note in matlab's lognfit documentation that says when censoring is not used, lognfit computes sigma using the square root of the unbiased estimator of the variance. This corresponds to using ddof=1 in the above code.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!