Count number of duplicate rows in SPARKSQL

牧云@^-^@ 提交于 2019-11-30 08:36:11

问题


I have requirement where i need to count number of duplicate rows in SparkSQL for Hive tables.

from pyspark import SparkContext, SparkConf
from pyspark.sql import HiveContext
from pyspark.sql.types import *
from pyspark.sql import Row
app_name="test"
conf = SparkConf().setAppName(app_name)
sc = SparkContext(conf=conf)
sqlContext = HiveContext(sc)
df = sqlContext.sql("select * from  DV_BDFRAWZPH_NOGBD_R000_SG.employee")

As of now i have hardcoded the table name, but it actually comes as parameter. That being said we don't know the number of columns or their names as well.In python pandas we have something like df.duplicated.sum() to count number of duplicate records. Do we have something like this here?

+---+---+---+
| 1 | A | B |
+---+---+---+
| 1 | A | B |
+---+---+---+
| 2 | B | E |
+---+---+---+
| 2 | B | E |
+---+---+---+
| 3 | D | G |
+---+---+---+
| 4 | D | G |
+---+---+---+

Here number of duplicate rows are 4. (for example)


回答1:


You essentially want to groupBy() all the columns and count(), then select the sum of the counts for the rows where the count is greater than 1.

import pyspark.sql.functions as f
df.groupBy(df.columns)\
    .count()\
    .where(f.col('count') > 1)\
    .select(f.sum('count'))\
    .show()

Explanation

After the grouping and aggregation, your data will look like this:

+---+---+---+---+
| 1 | A | B | 2 |
+---+---+---+---+
| 2 | B | E | 2 |
+---+---+---+---+
| 3 | D | G | 1 |
+---+---+---+---+
| 4 | D | G | 1 |
+---+---+---+---+

Then use where() to filter only the rows with a count greater than 1, and select the sum. In this case, you will get the first 2 rows, which sum to 4.



来源:https://stackoverflow.com/questions/48554619/count-number-of-duplicate-rows-in-sparksql

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!