Suppose I've data similar to following:
index id name value value2 value3 data1 val5
0 345 name1 1 99 23 3 66
1 12 name2 1 99 23 2 66
5 2 name6 1 99 23 7 66
How can we drop all those columns like (value
, value2
, value3
) where all rows have same values, in one command or couple of commands using python ?
Consider we have many columns similar to value
,value2
,value3
...value200
.
Output:
index id name data1
0 345 name1 3
1 12 name2 2
5 2 name6 7
What we can do is apply
nunique
to calc the number of unique values in the df and drop the columns which only have a single unique value:
In [285]:
nunique = df.apply(pd.Series.nunique)
cols_to_drop = nunique[nunique == 1].index
df.drop(cols_to_drop, axis=1)
Out[285]:
index id name data1
0 0 345 name1 3
1 1 12 name2 2
2 5 2 name6 7
Another way is to just diff
the numeric columns and sums
them:
In [298]:
cols = df.select_dtypes([np.number]).columns
diff = df[cols].diff().sum()
df.drop(diff[diff== 0].index, axis=1)
Out[298]:
index id name data1
0 0 345 name1 3
1 1 12 name2 2
2 5 2 name6 7
Another approach is to use the property that the standard deviation will be zero for a column with the same value:
In [300]:
cols = df.select_dtypes([np.number]).columns
std = df[cols].std()
cols_to_drop = std[std==0].index
df.drop(cols_to_drop, axis=1)
Out[300]:
index id name data1
0 0 345 name1 3
1 1 12 name2 2
2 5 2 name6 7
Actually the above can be done in a one-liner:
In [306]:
df.drop(df.std()[(df.std() == 0)].index, axis=1)
Out[306]:
index id name data1
0 0 345 name1 3
1 1 12 name2 2
2 5 2 name6 7
Another solution is set_index
from column which are not compared and then compare first row selected by iloc
by eq
with all DataFrame
and last use boolean indexing
:
df1 = df.set_index(['index','id','name',])
print (~df1.eq(df1.iloc[0]).all())
value False
value2 False
value3 False
data1 True
val5 False
dtype: bool
print (df1.ix[:, (~df1.eq(df1.iloc[0]).all())].reset_index())
index id name data1
0 0 345 name1 3
1 1 12 name2 2
2 5 2 name6 7
来源:https://stackoverflow.com/questions/39658574/how-to-drop-columns-which-have-same-values-in-all-rows-via-pandas-or-spark-dataf