Splitting a dataframe string column into multiple different columns

痞子三分冷 提交于 2019-11-25 22:39:15

A very direct way is to just use read.table on your character vector:

> read.table(text = text, sep = ".", colClasses = "character")
   V1 V2  V3  V4
1   F US CLE V13
2   F US CA6 U13
3   F US CA6 U13
4   F US CA6 U13
5   F US CA6 U13
6   F US CA6 U13
7   F US CA6 U13
8   F US CA6 U13
9   F US  DL U13
10  F US  DL U13
11  F US  DL U13
12  F US  DL Z13
13  F US  DL Z13

colClasses needs to be specified, otherwise F gets converted to FALSE (which is something I need to fix in "splitstackshape", otherwise I would have recommended that :) )


Update (> a year later)...

Alternatively, you can use my cSplit function, like this:

cSplit(as.data.table(text), "text", ".")
#     text_1 text_2 text_3 text_4
#  1:      F     US    CLE    V13
#  2:      F     US    CA6    U13
#  3:      F     US    CA6    U13
#  4:      F     US    CA6    U13
#  5:      F     US    CA6    U13
#  6:      F     US    CA6    U13
#  7:      F     US    CA6    U13
#  8:      F     US    CA6    U13
#  9:      F     US     DL    U13
# 10:      F     US     DL    U13
# 11:      F     US     DL    U13
# 12:      F     US     DL    Z13
# 13:      F     US     DL    Z13

Or, separate from "tidyr", like this:

library(dplyr)
library(tidyr)

as.data.frame(text) %>% separate(text, into = paste("V", 1:4, sep = "_"))
#    V_1 V_2 V_3 V_4
# 1    F  US CLE V13
# 2    F  US CA6 U13
# 3    F  US CA6 U13
# 4    F  US CA6 U13
# 5    F  US CA6 U13
# 6    F  US CA6 U13
# 7    F  US CA6 U13
# 8    F  US CA6 U13
# 9    F  US  DL U13
# 10   F  US  DL U13
# 11   F  US  DL U13
# 12   F  US  DL Z13
# 13   F  US  DL Z13

Is this what you are trying to do?

# Our data
text <- c("F.US.CLE.V13", "F.US.CA6.U13", "F.US.CA6.U13", "F.US.CA6.U13", 
"F.US.CA6.U13", "F.US.CA6.U13", "F.US.CA6.U13", "F.US.CA6.U13", 
"F.US.DL.U13", "F.US.DL.U13", "F.US.DL.U13", "F.US.DL.Z13", "F.US.DL.Z13"
)

#  Split into individual elements by the '.' character
#  Remember to escape it, because '.' by itself matches any single character
elems <- unlist( strsplit( text , "\\." ) )

#  We know the dataframe should have 4 columns, so make a matrix
m <- matrix( elems , ncol = 4 , byrow = TRUE )

#  Coerce to data.frame - head() is just to illustrate the top portion
head( as.data.frame( m ) )
#  V1 V2  V3  V4
#1  F US CLE V13
#2  F US CA6 U13
#3  F US CA6 U13
#4  F US CA6 U13
#5  F US CA6 U13
#6  F US CA6 U13

The way via unlist and matrix seems a bit convoluted, and requires you to hard-code the number of elements (this is actually a pretty big no-go. Of course you could circumvent hard-coding that number and determine it at run-time)

I would go a different route, and construct a data frame directly from the list that strsplit returns. For me, this is conceptually simpler. There are essentially two ways of doing this:

  1. as.data.frame – but since the list is exactly the wrong way round (we have a list of rows rather than a list of columns) we have to transpose the result. We also clear the rownames since they are ugly by default (but that’s strictly unnecessary!):

    `rownames<-`(t(as.data.frame(strsplit(text, '\\.'))), NULL)
    
  2. Alternatively, use rbind to construct a data frame from the list of rows. We use do.call to call rbind with all the rows as separate arguments:

    do.call(rbind, strsplit(text, '\\.'))
    

Both ways yield the same result:

     [,1] [,2] [,3]  [,4]
[1,] "F"  "US" "CLE" "V13"
[2,] "F"  "US" "CA6" "U13"
[3,] "F"  "US" "CA6" "U13"
[4,] "F"  "US" "CA6" "U13"
[5,] "F"  "US" "CA6" "U13"
[6,] "F"  "US" "CA6" "U13"
…

Clearly, the second way is much simpler than the first.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!