Creating a function to replace NAs from one data.frame with values from another

有些话、适合烂在心里 提交于 2019-11-30 06:38:34

What a great question.

Here's a data.table solution:

# Convert data.frames to data.tables (i.e. data.frames with extra powers;)
library(data.table)
fillDT <- data.table(fillDf, key=c("a", "b"))
naDT <- data.table(naDf, key=c("a", "b"))


# Merge data.tables, based on their keys (columns a & b)
outDT <- naDT[fillDT]    
#      a b  f  g f.1 g.1
# [1,] 1 3 NA  0 100  11
# [2,] 1 3 NA NA 100  11
# [3,] 1 3 NA  0 100  11
# [4,] 1 3  0  0 100  11
# [5,] 1 3  0 NA 100  11
# First 5 rows of 200 printed.

# In outDT[i, j], on the following two lines 
#   -- i is a Boolean vector indicating which rows will be operated on
#   -- j is an expression saying "(sub)assign from right column (e.g. f.1) to 
#        left column (e.g. f)
outDT[is.na(f), f:=f.1]
outDT[is.na(g), g:=g.1]

# Just keep the four columns ultimately needed   
outDT <- outDT[,list(a,b,g,f)]
#       a b  g   f
#  [1,] 1 3  0   0
#  [2,] 1 3 11   0
#  [3,] 1 3  0   0
#  [4,] 1 3 11   0
#  [5,] 1 3 11   0
# First 5 rows of 200 printed.

Here's a slightly more concise/robust version of your approach. You could replace the for-loop with a call to lapply, but I find the loop easier to read.

This function assumes any columns not in mergeCols are fair game to have their NAs filled. I'm not really sure this helps, but I'll take my chances with the voters.

fillNaDf.ju <- function(naDf, fillDf, mergeCols) {
  mergedDf <- merge(fillDf, naDf, by=mergeCols, suffixes=c(".fill",""))
  dataCols <- setdiff(names(naDf),mergeCols)
  # loop over all columns we didn't merge by
  for(col in dataCols) {
    rows <- is.na(mergedDf[,col])
    # skip this column if it doesn't contain any NAs
    if(!any(rows)) next
    rows <- which(rows)
    # replace NAs with values from fillDf
    mergedDf[rows,col] <- mergedDf[rows,paste(col,"fill",sep=".")]
  }
  # don't return ".fill" columns
  mergedDf[,names(naDf)]
}

My preference would be to pull out the code from merge that does the matching and do it myself so that I could keep the ordering of the original data frame intact, both row-wise and column-wise. I also use matrix indexing to avoid any loops, though to do so I create a new data frame with the revised fillCols and replace the columns of the original with it; I thought I could fill it in directly but apparently you can't use matrix ordering to replace parts of a data.frame, so I wouldn't be surprised if a loop over the names would be faster in some situations.

With matrix indexing:

fillNaDf <- function(naDf, fillDf, mergeCols, fillCols) {
  fillB <- do.call(paste, c(fillDf[, mergeCols, drop = FALSE], sep="\r"))
  naB <- do.call(paste, c(naDf[, mergeCols, drop = FALSE], sep="\r"))
  na.ind <- is.na(naDf[,fillCols])
  fill.ind <- cbind(match(naB, fillB)[row(na.ind)[na.ind]], col(na.ind)[na.ind])
  naX <- naDf[,fillCols]
  fillX <- fillDf[,fillCols]
  naX[na.ind] <- fillX[fill.ind]
  naDf[,colnames(naX)] <- naX
  naDf
}

With a loop:

fillNaDf2 <- function(naDf, fillDf, mergeCols, fillCols) {
  fillB <- do.call(paste, c(fillDf[, mergeCols, drop = FALSE], sep="\r"))
  naB <- do.call(paste, c(naDf[, mergeCols, drop = FALSE], sep="\r"))
  m <- match(naB, fillB)
  for(col in fillCols) {
    fix <- which(is.na(naDf[,col]))
    naDf[fix, col] <- fillDf[m[fix],col]
  }
  naDf
}
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!