Airflow dynamic DAG and Task Ids

可紊 提交于 2019-11-30 06:22:48

After numerous trials and errors, I was able to figure this out. Hopefully, it will help someone. Here's how it works: You need to have an iterator or an external source (file/database table) to generate dags/task dynamically through a template. You can keep the dag and task names static, just assign them ids dynamically in order to differentiate one dag from the other. You put this python script in the dags folder. When you start the airflow scheduler, it runs through this script on every heartbeat and writes the DAGs to the dag table in the database. If a dag (unique dag id) has already been written, it will simply skip it. The scheduler also look at the schedule of individual DAGs to determine which one is ready for execution. If a DAG is ready for execution, it executes it and updates its status. Here's a sample code:

from airflow.operators import PythonOperator
from airflow.operators import BashOperator
from airflow.models import DAG
from datetime import datetime, timedelta
import sys
import time

dagid   = 'DA' + str(int(time.time()))
taskid  = 'TA' + str(int(time.time()))

input_file = '/home/directory/airflow/textfile_for_dagids_and_schedule'

def my_sleeping_function(random_base):
    '''This is a function that will run within the DAG execution'''
    time.sleep(random_base)

def_args = {
    'owner': 'airflow',
    'depends_on_past': False,
    'start_date': datetime.now(), 'email_on_failure': False,                
    'retries': 1, 'retry_delay': timedelta(minutes=2)
}
with open(input_file,'r') as f:
    for line in f:
        args = line.strip().split(',')
    if len(args) < 6:
        continue
    dagid = 'DAA' + args[0]
    taskid = 'TAA' + args[0]
    yyyy    = int(args[1])
    mm      = int(args[2])
    dd      = int(args[3])
    hh      = int(args[4])
    mins    = int(args[5])
    ss      = int(args[6])
    dag = DAG(
        dag_id=dagid, default_args=def_args,
        schedule_interval='@once', start_date=datetime(yyyy,mm,dd,hh,mins,ss)
        )

    myBashTask = BashOperator(
        task_id=taskid,
        bash_command='python /home/directory/airflow/sendemail.py',
        dag=dag)

    task2id = taskid + '-X'

    task_sleep = PythonOperator(
        task_id=task2id,
        python_callable=my_sleeping_function,
        op_kwargs={'random_base': 10},
        dag=dag)

    task_sleep.set_upstream(myBashTask)

f.close()
Scott Ding

From How can I create DAGs dynamically?:

Airflow looks in you [sic] DAGS_FOLDER for modules that contain DAG objects in their global namespace, and adds the objects it finds in the DagBag. Knowing this all we need is a way to dynamically assign variable in the global namespace, which is easily done in python using the globals() function for the standard library which behaves like a simple dictionary.

for i in range(10):
    dag_id = 'foo_{}'.format(i)
    globals()[dag_id] = DAG(dag_id)
    # or better, call a function that returns a DAG object!
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!