line smoothing algorithm in python?

生来就可爱ヽ(ⅴ<●) 提交于 2019-11-30 05:32:39

I guess you used the code from here. You should have paid attention that the code was for a single dimension data points not for multi-dimension data points.

I am not much aware of Gaussian smoothing algorithm but after only briefly going through your code, I believe following is what you are trying to do (I am not sure if it gives you the result you desire). Replace last portion of your code with the following code:

smoothed=[0.0,0.0]*(len(list1)-window)
print smoothed

for i in range(len(smoothed)):
    smoothing=[0.0,0.0]
    for e,w in zip(list1[i:i+window],weight):
        smoothing=smoothing+numpy.multiply(e,w)
    smoothed[i]=smoothing/sum(weight)

You can smooth the path by following code:

from scipy.ndimage import gaussian_filter1d
import numpy as np
a=np.array([[78.03881018900006, 30.315651467000066],
 [78.044901609000078, 30.31512798600005], 
 [78.04927981700007, 30.312510579000048],
 [78.050041244000056, 30.301755415000059],
 [78.072646124000073, 30.281720353000082],
 [78.07902308000007, 30.273344651000059]])

x, y = a.T
t = np.linspace(0, 1, len(x))
t2 = np.linspace(0, 1, 100)

x2 = np.interp(t2, t, x)
y2 = np.interp(t2, t, y)
sigma = 10
x3 = gaussian_filter1d(x2, sigma)
y3 = gaussian_filter1d(y2, sigma)

x4 = np.interp(t, t2, x3)
y4 = np.interp(t, t2, y3)

plot(x, y, "o-", lw=2)
plot(x3, y3, "r", lw=2)
plot(x4, y4, "o", lw=2)

Here is the resut: blue dots are the original data, red curve are the smoothed curve which contains many points, if you want the same point count as original data, you can sample from the red curve and get the green points.

You can set sigma to change the smooth level of gaussian_filter1d().

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!