Sparse Vector vs Dense Vector

混江龙づ霸主 提交于 2019-11-30 04:58:02
Chthonic Project

Unless I have thoroughly misunderstood your doubt, the MLlib data type documentation illustrates this quite clearly:

import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;

// Create a dense vector (1.0, 0.0, 3.0).
Vector dv = Vectors.dense(1.0, 0.0, 3.0);
// Create a sparse vector (1.0, 0.0, 3.0) by specifying its indices and values corresponding to nonzero entries.
Vector sv = Vectors.sparse(3, new int[] {0, 2}, new double[] {1.0, 3.0});

Where the second argument of Vectors.sparse is an array of the indices, and the third argument is the array of the actual values in those indices.

Saurabh

Sparse vectors are when you have a lot of values in the vector as zero. While a dense vector is when most of the values in the vector are non zero.

If you have to create a sparse vector from the dense vector you specified, use the following syntax:

Vector sparseVector = Vectors.sparse(4, new int[] {1, 3}, new double[] {3.0, 4.0});
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!