Check if Polygon is Self-Intersecting

若如初见. 提交于 2019-11-30 03:24:59
  • Easy, slow, low memory footprint: compare each segment against all others and check for intersections. Complexity O(n2).

  • Slightly faster, medium memory footprint (modified version of above): store edges in spatial "buckets", then perform above algorithm on per-bucket basis. Complexity O(n2 / m) for m buckets (assuming uniform distribution).

  • Fast & high memory footprint: use a spatial hash function to split edges into buckets. Check for collisions. Complexity O(n).

  • Fast & low memory footprint: use a sweep-line algorithm, such as the one described here (or here). Complexity O(n log n)

The last is my favorite as it has good speed - memory balance, especially the Bentley-Ottmann algorithm. Implementation isn't too complicated either.

Check if any pair of non-contiguous line segments intersects.

For the sake of completeness i add another algorithm to this discussion.

Assuming the reader knows about axis aligned bounding boxes(Google it if not) It can be very efficient to quickly find pairs of edges that have theirs AABB's clashing using the "Sweep and Prune Algorithm". (google it). Intersection routines are then called on these pairs.

The advantage here is that you may even intersect a non straight edge(circles and splines) and the approach is more general albeit almost similarly efficient.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!