Error when checking model input: expected convolution2d_input_1 to have 4 dimensions, but got array with shape (32, 32, 3)

末鹿安然 提交于 2019-11-30 02:43:12

The input shape you have defined is the shape of a single sample. The model itself expects some array of samples as input (even if its an array of length 1).

Your output really should be 4-d, with the 1st dimension to enumerate the samples. i.e. for a single image you should return a shape of (1, 32, 32, 3).

You can find more information here under "Convolution2D"/"Input shape"

It is as simple as to Add one dimension, so I was going through the tutorial taught by Siraj Rawal on CNN Code Deployment tutorial, it was working on his terminal, but the same code was not working on my terminal, so I did some research about it and solved, I don't know if that works for you all. Here I have come up with solution;

Unsolved code lines which gives you problem:

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    print(x_train.shape)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols)
    input_shape = (img_rows, img_cols, 1)

Solved Code:

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    print(x_train.shape)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

Please share the feedback here if that worked for you.

Ashuthosh Martin Dasari
x_train = x_train.reshape(-1,28, 28, 1)   #Reshape for CNN -  should work!!
x_test = x_test.reshape(-1,28, 28, 1)
history_cnn = cnn.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test))

Output:

Train on 60000 samples, validate on 10000 samples Epoch 1/5 60000/60000 [==============================] - 157s 3ms/step - loss: 0.0981 - acc: 0.9692 - val_loss: 0.0468 - val_acc: 0.9861 Epoch 2/5 60000/60000 [==============================] - 157s 3ms/step - loss: 0.0352 - acc: 0.9892 - val_loss: 0.0408 - val_acc: 0.9879 Epoch 3/5 60000/60000 [==============================] - 159s 3ms/step - loss: 0.0242 - acc: 0.9924 - val_loss: 0.0291 - val_acc: 0.9913 Epoch 4/5 60000/60000 [==============================] - 165s 3ms/step - loss: 0.0181 - acc: 0.9945 - val_loss: 0.0361 - val_acc: 0.9888 Epoch 5/5 60000/60000 [==============================] - 168s 3ms/step - loss: 0.0142 - acc: 0.9958 - val_loss: 0.0354 - val_acc: 0.9906

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!