Mergesort with Python

我的未来我决定 提交于 2019-11-26 10:16:13

问题


I couldn\'t find any working Python 3.3 mergesort algorithm codes, so I made one myself. Is there any way to speed it up? It sorts 20,000 numbers in about 0.3-0.5 seconds

def msort(x):
    result = []
    if len(x) < 2:
        return x
    mid = int(len(x)/2)
    y = msort(x[:mid])
    z = msort(x[mid:])
    while (len(y) > 0) or (len(z) > 0):
        if len(y) > 0 and len(z) > 0:
            if y[0] > z[0]:
                result.append(z[0])
                z.pop(0)
            else:
                result.append(y[0])
                y.pop(0)
        elif len(z) > 0:
            for i in z:
                result.append(i)
                z.pop(0)
        else:
            for i in y:
                result.append(i)
                y.pop(0)
    return result

回答1:


You can initialise the whole result list in the top level call to mergesort:

result = [0]*len(x)   # replace 0 with a suitable default element if necessary. 
                      # or just copy x (result = x[:])

Then for the recursive calls you can use a helper function to which you pass not sublists, but indices into x. And the bottom level calls read their values from x and write into result directly.

That way you can avoid all that poping and appending which should improve performance.




回答2:


The first improvement would be to simplify the three cases in the main loop: Rather than iterating while some of the sequence has elements, iterate while both sequences have elements. When leaving the loop, one of them will be empty, we don't know which, but we don't care: We append them at the end of the result.

def msort2(x):
    if len(x) < 2:
        return x
    result = []          # moved!
    mid = int(len(x) / 2)
    y = msort2(x[:mid])
    z = msort2(x[mid:])
    while (len(y) > 0) and (len(z) > 0):
        if y[0] > z[0]:
            result.append(z[0])
            z.pop(0)
        else:
            result.append(y[0])
            y.pop(0)
    result += y
    result += z
    return result

The second optimization is to avoid popping the elements. Rather, have two indices:

def msort3(x):
    if len(x) < 2:
        return x
    result = []
    mid = int(len(x) / 2)
    y = msort3(x[:mid])
    z = msort3(x[mid:])
    i = 0
    j = 0
    while i < len(y) and j < len(z):
        if y[i] > z[j]:
            result.append(z[j])
            j += 1
        else:
            result.append(y[i])
            i += 1
    result += y[i:]
    result += z[j:]
    return result

A final improvement consists in using a non recursive algorithm to sort short sequences. In this case I use the built-in sorted function and use it when the size of the input is less than 20:

def msort4(x):
    if len(x) < 20:
        return sorted(x)
    result = []
    mid = int(len(x) / 2)
    y = msort4(x[:mid])
    z = msort4(x[mid:])
    i = 0
    j = 0
    while i < len(y) and j < len(z):
        if y[i] > z[j]:
            result.append(z[j])
            j += 1
        else:
            result.append(y[i])
            i += 1
    result += y[i:]
    result += z[j:]
    return result

My measurements to sort a random list of 100000 integers are 2.46 seconds for the original version, 2.33 for msort2, 0.60 for msort3 and 0.40 for msort4. For reference, sorting all the list with sorted takes 0.03 seconds.




回答3:


Code from MIT course. (with generic cooperator )

import operator


def merge(left, right, compare):
    result = []
    i, j = 0, 0
    while i < len(left) and j < len(right):
        if compare(left[i], right[j]):
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            j += 1
    while i < len(left):
        result.append(left[i])
        i += 1
    while j < len(right):
        result.append(right[j])
        j += 1
    return result


def mergeSort(L, compare=operator.lt):
    if len(L) < 2:
        return L[:]
    else:
        middle = int(len(L) / 2)
        left = mergeSort(L[:middle], compare)
        right = mergeSort(L[middle:], compare)
        return merge(left, right, compare)



回答4:


def merge_sort(x):

    if len(x) < 2:return x

    result,mid = [],int(len(x)/2)

    y = merge_sort(x[:mid])
    z = merge_sort(x[mid:])

    while (len(y) > 0) and (len(z) > 0):
            if y[0] > z[0]:result.append(z.pop(0))   
            else:result.append(y.pop(0))

    result.extend(y+z)
    return result



回答5:


Take my implementation

def merge_sort(sequence):
    """
    Sequence of numbers is taken as input, and is split into two halves, following which they are recursively sorted.
    """
    if len(sequence) < 2:
        return sequence

    mid = len(sequence) // 2     # note: 7//2 = 3, whereas 7/2 = 3.5

    left_sequence = merge_sort(sequence[:mid])
    right_sequence = merge_sort(sequence[mid:])

    return merge(left_sequence, right_sequence)

def merge(left, right):
    """
    Traverse both sorted sub-arrays (left and right), and populate the result array
    """
    result = []
    i = j = 0
    while i < len(left) and j < len(right):
        if left[i] < right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            j += 1
    result += left[i:]
    result += right[j:]

    return result


print merge_sort([5, 2, 6, 8, 5, 8, 1])



回答6:


As already said, l.pop(0) is a O(len(l)) operation and must be avoided, the above msort function is O(n**2). If efficiency matter, indexing is better but have cost too. The for x in l is faster but not easy to implement for mergesort : iter can be used instead here. Finally, checking i < len(l) is made twice because tested again when accessing the element : the exception mechanism (try except) is better and give a last improvement of 30% .

def msort(l):
    if len(l)>1:
        t=len(l)//2
        it1=iter(msort(l[:t]));x1=next(it1)
        it2=iter(msort(l[t:]));x2=next(it2)
        l=[]
        try:
            while True:
                if x1<=x2: l.append(x1);x1=next(it1)
                else     : l.append(x2);x2=next(it2)
        except:
            if x1<=x2: l.append(x2);l.extend(it2)
            else:      l.append(x1);l.extend(it1)
    return l



回答7:


Loops like this can probably be speeded up:

for i in z:
    result.append(i)
    z.pop(0)

Instead, simply do this:

result.extend(z)

Note that there is no need to clean the contents of z because you won't use it anyway.




回答8:


A longer one that counts inversions and adheres to the sorted interface. It's trivial to modify this to make it a method of an object that sorts in place.

import operator

class MergeSorted:

    def __init__(self):
        self.inversions = 0

    def __call__(self, l, key=None, reverse=False):

        self.inversions = 0

        if key is None:
            self.key = lambda x: x
        else:
            self.key = key

        if reverse:
            self.compare = operator.gt
        else:
            self.compare = operator.lt

        dest = list(l)
        working = [0] * len(l)
        self.inversions = self._merge_sort(dest, working, 0, len(dest))
        return dest

    def _merge_sort(self, dest, working, low, high):
        if low < high - 1:
            mid = (low + high) // 2
            x = self._merge_sort(dest, working, low, mid)
            y = self._merge_sort(dest, working, mid, high)
            z = self._merge(dest, working, low, mid, high)
            return (x + y + z)
        else:
            return 0

    def _merge(self, dest, working, low, mid, high):
        i = 0
        j = 0
        inversions = 0

        while (low + i < mid) and (mid + j < high):
            if self.compare(self.key(dest[low + i]), self.key(dest[mid + j])):
                working[low + i + j] = dest[low + i]
                i += 1
            else:
                working[low + i + j] = dest[mid + j]
                inversions += (mid - (low + i))
                j += 1

        while low + i < mid:
            working[low + i + j] = dest[low + i]
            i += 1

        while mid + j < high:
            working[low + i + j] = dest[mid + j]
            j += 1

        for k in range(low, high):
            dest[k] = working[k]

        return inversions


msorted = MergeSorted()

Uses

>>> l = [5, 2, 3, 1, 4]
>>> s = msorted(l)
>>> s
[1, 2, 3, 4, 5]
>>> msorted.inversions
6

>>> l = ['e', 'b', 'c', 'a', 'd']
>>> d = {'a': 10,
...      'b': 4,
...      'c': 2,
...      'd': 5,
...      'e': 9}
>>> key = lambda x: d[x]
>>> s = msorted(l, key=key)
>>> s
['c', 'b', 'd', 'e', 'a']
>>> msorted.inversions
5

>>> l = [5, 2, 3, 1, 4]
>>> s = msorted(l, reverse=True)
>>> s
[5, 4, 3, 2, 1]
>>> msorted.inversions
4

>>> l = ['e', 'b', 'c', 'a', 'd']
>>> d = {'a': 10,
...      'b': 4,
...      'c': 2,
...      'd': 5,
...      'e': 9}
>>> key = lambda x: d[x]
>>> s = msorted(l, key=key, reverse=True)
>>> s
['a', 'e', 'd', 'b', 'c']
>>> msorted.inversions
5



回答9:


Many have answered this question correctly, this is just another solution (although my solution is very similar to Max Montana) but I have few differences for implementation:

let's review the general idea here before we get to the code:

  • Divide the list into two roughly equal halves.
  • Sort the left half.
  • Sort the right half.
  • Merge the two sorted halves into one sorted list.

here is the code (tested with python 3.7):

def merge(left,right):
    result=[] 
    i,j=0,0
    while i<len(left) and j<len(right):
        if left[i] < right[j]:
            result.append(left[i])
            i+=1
        else:
            result.append(right[j])
            j+=1
    result.extend(left[i:]) # since we want to add each element and not the object list
    result.extend(right[j:])
    return result

def merge_sort(data):
    if len(data)==1:
        return data
    middle=len(data)//2
    left_data=merge_sort(data[:middle])
    right_data=merge_sort(data[middle:])
    return merge(left_data,right_data)


data=[100,5,200,3,100,4,8,9] 
print(merge_sort(data))



回答10:


here is another solution

class MergeSort(object):
    def _merge(self,left, right):
        nl = len(left)
        nr = len(right)
        result = [0]*(nl+nr)
        i=0
        j=0
        for k in range(len(result)):
            if nl>i and nr>j:
                if left[i] <= right[j]:
                    result[k]=left[i]
                    i+=1
                else:
                    result[k]=right[j]
                    j+=1
            elif nl==i:
                result[k] = right[j]
                j+=1
            else: #nr>j:
                result[k] = left[i]
                i+=1
        return result

    def sort(self,arr):
        n = len(arr)
        if n<=1:
            return arr 
        left = self.sort(arr[:n/2])
        right = self.sort(arr[n/2:] )
        return self._merge(left, right)
def main():
    import random
    a= range(100000)
    random.shuffle(a)
    mr_clss = MergeSort()
    result = mr_clss.sort(a)
    #print result

if __name__ == '__main__':
    main()

and here is run time for list with 100000 elements:

real    0m1.073s
user    0m1.053s
sys         0m0.017s



回答11:


def merge(l1, l2, out=[]):
    if l1==[]: return out+l2
    if l2==[]: return out+l1
    if l1[0]<l2[0]: return merge(l1[1:], l2, out+l1[0:1])
    return merge(l1, l2[1:], out+l2[0:1])
def merge_sort(l): return (lambda h: l if h<1 else merge(merge_sort(l[:h]), merge_sort(l[h:])))(len(l)/2)
print(merge_sort([1,4,6,3,2,5,78,4,2,1,4,6,8]))



回答12:


Here is the CLRS Implementation:

def merge(arr, p, q, r):
    n1 = q - p + 1
    n2 = r - q
    right, left = [], []
    for i in range(n1):
        left.append(arr[p + i])
    for j in range(n2):
        right.append(arr[q + j + 1])
    left.append(float('inf'))
    right.append(float('inf'))
    i = j = 0
    for k in range(p, r + 1):
        if left[i] <= right[j]:
            arr[k] = left[i]
            i += 1
        else:
            arr[k] = right[j]
            j += 1


def merge_sort(arr, p, r):
    if p < r:
        q = (p + r) // 2
        merge_sort(arr, p, q)
        merge_sort(arr, q + 1, r)
        merge(arr, p, q, r)


if __name__ == '__main__':
    test = [5, 2, 4, 7, 1, 3, 2, 6]
    merge_sort(test, 0, len(test) - 1)
    print test

Result:

[1, 2, 2, 3, 4, 5, 6, 7]



回答13:


def merge(x):
    if len(x) == 1:
        return x
    else:
        mid = int(len(x) / 2)
        l = merge(x[:mid])
        r = merge(x[mid:])
    i = j = 0
    result = []
    while i < len(l) and j < len(r):
        if l[i] < r[j]:
            result.append(l[i])
            i += 1
        else:
            result.append(r[j])
            j += 1
    result += l[i:]
    result += r[j:]
    return result



回答14:


A little late the the party, but I figured I'd throw my hat in the ring as my solution seems to run faster than OP's (on my machine, anyway):

# [Python 3]
def merge_sort(arr):
    if len(arr) < 2:
        return arr
    half = len(arr) // 2
    left = merge_sort(arr[:half])
    right = merge_sort(arr[half:])
    out = []
    li = ri = 0  # index of next element from left, right halves
    while True:
        if li >= len(left):  # left half is exhausted
            out.extend(right[ri:])
            break
        if ri >= len(right): # right half is exhausted
            out.extend(left[li:])
            break
        if left[li] < right[ri]:
            out.append(left[li])
            li += 1
        else:
            out.append(right[ri])
            ri += 1
    return out

This doesn't have any slow pop()s, and once one of the half-arrays is exhausted, it immediately extends the other one onto the output array rather than starting a new loop.

I know it's machine dependent, but for 100,000 random elements (above merge_sort() vs. Python built-in sorted()):

merge sort: 1.03605 seconds
Python sort: 0.045 seconds
Ratio merge / Python sort: 23.0229



回答15:


def mergeSort(alist):
    print("Splitting ",alist)
    if len(alist)>1:
        mid = len(alist)//2
        lefthalf = alist[:mid]
        righthalf = alist[mid:]

        mergeSort(lefthalf)
        mergeSort(righthalf)

        i=0
        j=0
        k=0
        while i < len(lefthalf) and j < len(righthalf):
            if lefthalf[i] < righthalf[j]:
                alist[k]=lefthalf[i]
                i=i+1
            else:
                alist[k]=righthalf[j]
                j=j+1
            k=k+1

        while i < len(lefthalf):
            alist[k]=lefthalf[i]
            i=i+1
            k=k+1

        while j < len(righthalf):
            alist[k]=righthalf[j]
            j=j+1
            k=k+1
    print("Merging ",alist)

alist = [54,26,93,17,77,31,44,55,20]
mergeSort(alist)
print(alist)



回答16:


Try this recursive version

def mergeList(l1,l2):
    l3=[]
    Tlen=len(l1)+len(l2)
    inf= float("inf")
    for i in range(Tlen):
        print   "l1= ",l1[0]," l2= ",l2[0]
        if l1[0]<=l2[0]:
            l3.append(l1[0])
            del l1[0]
            l1.append(inf)
        else:
            l3.append(l2[0])
            del l2[0]
            l2.append(inf)
    return l3

def main():
    l1=[2,10,7,6,8]
    print mergeSort(breaklist(l1))

def breaklist(rawlist):
    newlist=[]
    for atom in rawlist:
        print atom
        list_atom=[atom]
        newlist.append(list_atom)
    return newlist

def mergeSort(inputList):
    listlen=len(inputList)
    if listlen ==1:
        return inputList
    else:
        newlist=[]
        if listlen % 2==0:
            for i in range(listlen/2):
                newlist.append(mergeList(inputList[2*i],inputList[2*i+1]))
        else:
            for i in range((listlen+1)/2):
                if 2*i+1<listlen:
                    newlist.append(mergeList(inputList[2*i],inputList[2*i+1]))
                else:
                    newlist.append(inputList[2*i])
        return  mergeSort(newlist)

if __name__ == '__main__':
    main()



回答17:


    def merge(a,low,mid,high):
        l=a[low:mid+1]
        r=a[mid+1:high+1]
        #print(l,r)
        k=0;i=0;j=0;
        c=[0 for i in range(low,high+1)]
        while(i<len(l) and j<len(r)):
            if(l[i]<=r[j]):

                c[k]=(l[i])
                k+=1

                i+=1
            else:
                c[k]=(r[j])
                j+=1
                k+=1
        while(i<len(l)):
            c[k]=(l[i])
            k+=1
            i+=1

        while(j<len(r)):
            c[k]=(r[j])
            k+=1
            j+=1
        #print(c)  
        a[low:high+1]=c  

    def mergesort(a,low,high):
        if(high>low):
            mid=(low+high)//2


            mergesort(a,low,mid)
            mergesort(a,mid+1,high)
            merge(a,low,mid,high)

    a=[12,8,3,2,9,0]
    mergesort(a,0,len(a)-1)
    print(a)



回答18:


If you change your code like that it'll be working.

def merge_sort(arr):
    if len(arr) < 2:
        return arr[:]
    middle_of_arr = len(arr) / 2
    left = arr[0:middle_of_arr]
    right = arr[middle_of_arr:]
    left_side = merge_sort(left)
    right_side = merge_sort(right)
    return merge(left_side, right_side)

def merge(left_side, right_side):
    result = []
    while len(left_side) > 0 or len(right_side) > 0:
        if len(left_side) > 0 and len(right_side) > 0:
            if left_side[0] <= right_side[0]:
                result.append(left_side.pop(0))
            else:
                result.append(right_side.pop(0))
        elif len(left_side) > 0:
            result.append(left_side.pop(0))
        elif len(right_side) > 0:
            result.append(right_side.pop(0))
    return result

arr = [6, 5, 4, 3, 2, 1]
# print merge_sort(arr)
# [1, 2, 3, 4, 5, 6]



回答19:


The following code pops at the end (efficient enough) and sorts inplace despite returning as well.

def mergesort(lis):
    if len(lis) > 1:
        left, right = map(lambda l: list(reversed(mergesort(l))), (lis[::2], lis[1::2]))
        lis.clear()
        while left and right:
            lis.append(left.pop() if left[-1] < right[-1] else right.pop())
        lis.extend(left[::-1])
        lis.extend(right[::-1])
    return lis



回答20:


This is very similar to the "MIT" solution and a couple others above, but answers the question in a little more "Pythonic" manner by passing references to the left and right partitions instead of positional indexes, and by using a range in the for loop with slice notation to fill in the sorted array:

def merge_sort(array):
    n = len(array)
    if n > 1:
        mid = n//2
        left = array[0:mid]
        right = array[mid:n]
        print(mid, left, right, array)
        merge_sort(left)
        merge_sort(right)
        merge(left, right, array)

def merge(left, right, array):
    array_length = len(array)
    right_length = len(right)
    left_length = len(left)
    left_index = right_index = 0
    for array_index in range(0, array_length):
        if right_index == right_length:
            array[array_index:array_length] = left[left_index:left_length]
            break
        elif left_index == left_length:
            array[array_index:array_length] = right[right_index:right_length]
            break
        elif left[left_index] <= right[right_index]:
                array[array_index] = left[left_index]
                left_index += 1
        else:
            array[array_index] = right[right_index]
            right_index += 1

array = [99,2,3,3,12,4,5]
arr_len = len(array)
merge_sort(array)
print(array)
assert len(array) == arr_len

This solution finds the left and right partitions using Python's handy // operator, and then passes the left, right, and array references to the merge function, which in turn rebuilds the original array in place. The trick is in the cleanup: when you have reached the end of either the left or the right partition, the original array is filled in with whatever is left over in the other partition.




回答21:


Glad there are tons of answers, I hope you find this one to be clear, concise, and fast.

Thank you

import math

def merge_array(ar1, ar2):
    c, i, j= [], 0, 0

    while i < len(ar1) and j < len(ar2):
        if  ar1[i] < ar2[j]:
            c.append(ar1[i])
            i+=1
        else:
            c.append(ar2[j])
            j+=1     
    return c + ar1[i:] + ar2[j:]

def mergesort(array):
    n = len(array)
    if n == 1:
        return array
    half_n =  math.floor(n/2)  
    ar1, ar2 = mergesort(array[:half_n]), mergesort(array[half_n:])
    return merge_array(ar1, ar2)



回答22:


#here is my answer using two function one for merge and another for divide and 
 #conquer 
l=int(input('enter range len'))      
c=list(range(l,0,-1))
print('list before sorting is',c)
def mergesort1(c,l,r):    
    i,j,k=0,0,0
    while (i<len(l))&(j<len(r)):
        if l[i]<r[j]:
            c[k]=l[i]
            i +=1            
        else:
            c[k]=r[j]
            j +=1
        k +=1
    while i<len(l):
        c[k]=l[i]
        i+=1
        k+=1
    while j<len(r):
        c[k]=r[j]
        j+=1
        k+=1
    return c   
def mergesort(c):
    if len(c)<2:
        return c
    else:
        l=c[0:(len(c)//2)]
        r=c[len(c)//2:len(c)]
        mergesort(l)
        mergesort(r)
    return    mergesort1(c,l,r)   


来源:https://stackoverflow.com/questions/18761766/mergesort-with-python

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!