Correct fitting with scipy curve_fit including errors in x?

佐手、 提交于 2019-11-30 00:23:39

scipy.optmize.curve_fit uses standard non-linear least squares optimization and therefore only minimizes the deviation in the response variables. If you want to have an error in the independent variable to be considered you can try scipy.odr which uses orthogonal distance regression. As its name suggests it minimizes in both independent and dependent variables.

Have a look at the sample below. The fit_type parameter determines whether scipy.odr does full ODR (fit_type=0) or least squares optimization (fit_type=2).

EDIT

Although the example worked it did not make much sense, since the y data was calculated on the noisy x data, which just resulted in an unequally spaced indepenent variable. I updated the sample which now also shows how to use RealData which allows for specifying the standard error of the data instead of the weights.

from scipy.odr import ODR, Model, Data, RealData
import numpy as np
from pylab import *

def func(beta, x):
    y = beta[0]+beta[1]*x+beta[2]*x**3
    return y

#generate data
x = np.linspace(-3,2,100)
y = func([-2.3,7.0,-4.0], x)

# add some noise
x += np.random.normal(scale=0.3, size=100)
y += np.random.normal(scale=0.1, size=100)

data = RealData(x, y, 0.3, 0.1)
model = Model(func)

odr = ODR(data, model, [1,0,0])
odr.set_job(fit_type=2)
output = odr.run()

xn = np.linspace(-3,2,50)
yn = func(output.beta, xn)
hold(True)
plot(x,y,'ro')
plot(xn,yn,'k-',label='leastsq')
odr.set_job(fit_type=0)
output = odr.run()
yn = func(output.beta, xn)
plot(xn,yn,'g-',label='odr')
legend(loc=0)

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!