signals function|KNN|SVM|average linkage|Complete linkage|single linkage

泄露秘密 提交于 2019-11-29 22:36:42

生物医疗大数据

存在系统误差使得估计量有偏,如下图红色和蓝色图形,存在随机误差使得估计量并不是同一个值,如图中除去期望之外的曲线值,为了控制随机抽样造成的误差,可以使用p-value决定是否服从假设检验,判断两个变量之间相关性的有无。

 

 

 

相关系数:该系数广泛用于度量两个变量之间的线性相关程度。

 

建立模型:

技术种类:线性模型&机器学习模型

按输出数据分类:监督学习模型&非监督学习模型

Average linkage demo

 

 

 

第一个矩阵是原始数据,单未知数据结构,通过average linkage方法结倒推得到其数据结构,即把数据展开了。主要步骤是找到Smallest distance(因为此两者之间的关系最简单),将距离均值作为到中间未知的距离(因为average linkage中的average决定的),随后以此类推。

除去average linkage方法之外还有MaxComplete linkage&minsingle linkage

 

对于classify来说,有data-baseKNNK取值重要决定学习规则的范围;和Model-oriented其最重要的是找到区分多类数据的曲线,该曲线的函数思路可有以下三种:

1.高次项SVM(升维)

2.用傅里叶变换用三角函数凑不平滑曲线

3.signals function源自泰勒展开,通过将signals function加权得到划分曲线,这也是神经网络模型的基础

 

 

 

 
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!