Iterative Closest Point (ICP) implementation on python

瘦欲@ 提交于 2019-11-29 22:30:00

Finally, I managed to write my own implementation of ICP in Python, using the sklearn and opencv libraries.

The function takes two datasets, an initial relative pose estimation and the desired number of iterations. It returns a transformation matrix that transforms the first dataset to the second.

Enjoy!

 import cv2
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.neighbors import NearestNeighbors


def icp(a, b, init_pose=(0,0,0), no_iterations = 13):
    '''
    The Iterative Closest Point estimator.
    Takes two cloudpoints a[x,y], b[x,y], an initial estimation of
    their relative pose and the number of iterations
    Returns the affine transform that transforms
    the cloudpoint a to the cloudpoint b.
    Note:
        (1) This method works for cloudpoints with minor
        transformations. Thus, the result depents greatly on
        the initial pose estimation.
        (2) A large number of iterations does not necessarily
        ensure convergence. Contrarily, most of the time it
        produces worse results.
    '''

    src = np.array([a.T], copy=True).astype(np.float32)
    dst = np.array([b.T], copy=True).astype(np.float32)

    #Initialise with the initial pose estimation
    Tr = np.array([[np.cos(init_pose[2]),-np.sin(init_pose[2]),init_pose[0]],
                   [np.sin(init_pose[2]), np.cos(init_pose[2]),init_pose[1]],
                   [0,                    0,                   1          ]])

    src = cv2.transform(src, Tr[0:2])

    for i in range(no_iterations):
        #Find the nearest neighbours between the current source and the
        #destination cloudpoint
        nbrs = NearestNeighbors(n_neighbors=1, algorithm='auto',
                                warn_on_equidistant=False).fit(dst[0])
        distances, indices = nbrs.kneighbors(src[0])

        #Compute the transformation between the current source
        #and destination cloudpoint
        T = cv2.estimateRigidTransform(src, dst[0, indices.T], False)
        #Transform the previous source and update the
        #current source cloudpoint
        src = cv2.transform(src, T)
        #Save the transformation from the actual source cloudpoint
        #to the destination
        Tr = np.dot(Tr, np.vstack((T,[0,0,1])))
    return Tr[0:2]

Call it like this:

#Create the datasets
ang = np.linspace(-np.pi/2, np.pi/2, 320)
a = np.array([ang, np.sin(ang)])
th = np.pi/2
rot = np.array([[np.cos(th), -np.sin(th)],[np.sin(th), np.cos(th)]])
b = np.dot(rot, a) + np.array([[0.2], [0.3]])

#Run the icp
M2 = icp(a, b, [0.1,  0.33, np.pi/2.2], 30)

#Plot the result
src = np.array([a.T]).astype(np.float32)
res = cv2.transform(src, M2)
plt.figure()
plt.plot(b[0],b[1])
plt.plot(res[0].T[0], res[0].T[1], 'r.')
plt.plot(a[0], a[1])
plt.show()
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!