Python and OpenCV. How do I detect all (filled)circles/round objects in an image?

限于喜欢 提交于 2019-11-29 20:44:36

The last two parameters are what seem to be passed to cv.Canny(), which implies that cv.Canny() is called from within cv.HoughCircles(). I'm not too sure about that.

As for the sizes, it seems like the next two parameters (after 200, 100) default to 0, which might mean that all sizes are detected.

From the C++ example's source, I can also guess that you don't need to do a Canny edge detection:

#include <cv.h>
#include <highgui.h>
#include <math.h>

using namespace cv;

int main(int argc, char** argv)
{
    Mat img, gray;
    if( argc != 2 && !(img=imread(argv[1], 1)).data)
        return -1;
    cvtColor(img, gray, CV_BGR2GRAY);
    // smooth it, otherwise a lot of false circles may be detected
    GaussianBlur( gray, gray, Size(9, 9), 2, 2 );
    vector<Vec3f> circles;
    HoughCircles(gray, circles, CV_HOUGH_GRADIENT,
                 2, gray->rows/4, 200, 100 );
    for( size_t i = 0; i < circles.size(); i++ )
    {
         Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
         int radius = cvRound(circles[i][2]);
         // draw the circle center
         circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 );
         // draw the circle outline
         circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 );
    }
    namedWindow( "circles", 1 );
    imshow( "circles", img );
    return 0;
}

You're trying to convert this C++ code into Python, I assume?

for( size_t i = 0; i < circles.size(); i++ )
{
     Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
     int radius = cvRound(circles[i][2]);
     // draw the circle center
     circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 );
     // draw the circle outline
     circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 );
}

As far as I can tell, CvMat objects are iterable, just like a list:

for circle in storage:
  radius = circle[2]
  center = (circle[0], circle[1])

  cv.Circle(im, center, radius, (0, 0, 255), 3, 8, 0)

I don't have any test images, so don't take my word that this works. Your complete code would might be:

import cv

def main():
  im = cv.LoadImage('Proba.jpg')
  gray = cv.CreateImage(cv.GetSize(im), 8, 1)
  edges = cv.CreateImage(cv.GetSize(im), 8, 1)

  cv.CvtColor(im, gray, cv.CV_BGR2GRAY)
  #cv.Canny(gray, edges, 20, 55, 3)

  storage = cv.CreateMat(im.width, 1, cv.CV_32FC3)
  cv.HoughCircles(edges, storage, cv.CV_HOUGH_GRADIENT, 5, 25, 200, 10)

  for i in xrange(storage.width - 1):
    radius = storage[i, 2]
    center = (storage[i, 0], storage[i, 1])

    print (radius, center)

    cv.Circle(im, center, radius, (0, 0, 255), 3, 8, 0)

  cv.NamedWindow('Circles')
  cv.ShowImage('Circles', im)
  cv.WaitKey(0)

if __name__ == '__main__':
  main()
mpenkov

Have a look at my answer to this question for some working source code (it's C but I used a C++ compiler cause it's more lenient).

First, I cropped your image (to get something convenient to work with) and applied a threshold to your image to separate the foreground from the background:

Then I directly applied the source code to the thresholded image. Here is the text output:

center x: 330 y: 507 A: 13 B: 4
center x: 78 y: 507 A: 22 B: 4
center x: 270 y: 503 A: 8 B: 8
center x: 222 y: 493 A: 21 B: 17
center x: 140 y: 484 A: 17 B: 18
center x: 394 y: 478 A: 17 B: 15
center x: 311 y: 468 A: 8 B: 8
center x: 107 y: 472 A: 12 B: 12
center x: 7 y: 472 A: 6 B: 19
center x: 337 y: 442 A: 10 B: 9
center x: 98 y: 432 A: 10 B: 10
center x: 357 y: 421 A: 7 B: 7
center x: 488 y: 429 A: 22 B: 23
center x: 411 y: 400 A: 13 B: 12
center x: 42 y: 400 A: 11 B: 12
center x: 365 y: 391 A: 14 B: 13
center x: 141 y: 396 A: 19 B: 19
center x: 9 y: 379 A: 8 B: 18
center x: 192 y: 365 A: 10 B: 9
center x: 347 y: 340 A: 20 B: 20
center x: 8 y: 305 A: 7 B: 13
center x: 95 y: 308 A: 23 B: 24
center x: 318 y: 297 A: 15 B: 15
center x: 159 y: 285 A: 10 B: 10
center x: 412 y: 291 A: 26 B: 27
center x: 504 y: 278 A: 6 B: 16
center x: 233 y: 277 A: 20 B: 20
center x: 459 y: 256 A: 15 B: 15
center x: 7 y: 239 A: 6 B: 9
center x: 377 y: 239 A: 14 B: 14
center x: 197 y: 228 A: 12 B: 12
center x: 302 y: 237 A: 12 B: 22
center x: 98 y: 224 A: 24 B: 23
center x: 265 y: 203 A: 18 B: 18
center x: 359 y: 202 A: 22 B: 22
center x: 149 y: 201 A: 20 B: 21
center x: 219 y: 169 A: 7 B: 9
center x: 458 y: 172 A: 20 B: 20
center x: 497 y: 157 A: 13 B: 21
center x: 151 y: 125 A: 18 B: 17
center x: 39 y: 109 A: 9 B: 10
center x: 81 y: 116 A: 20 B: 19
center x: 249 y: 104 A: 14 B: 13
center x: 429 y: 76 A: 23 B: 24
center x: 493 y: 33 A: 11 B: 10
center x: 334 y: 26 A: 12 B: 14

And here is the output image:

The main problem is that circles that have merged together have not been detected at all. The code was originally written for detecting filled ellipses only, so you can probably deal with this issue by tweaking the code.

A similar solution in python. Originally I tried to run a contour detection described here, but it doesn't worked well. So first some thresholding was necessary. The code for threshold is here:

    fimg = misc.imread("boubles.jpg")
    gimg = color.colorconv.rgb2grey(fimg)
    vimg = []
    for l in gimg:
        l2 = sign(l - 0.50) / 2 + 0.5
        vimg.append(l2)

    img = array(vimg)
    imshow(img)

With this I get an image like this:

And after edge detection described in the link above I got this:

If you check the code, you will find that's really easy to count the objects. The only problem is, that some of the bubbles are counted twice. And I guess the thresholding function can be improved as well. But I suggest to use skimage it's easy to use and has good samples on their web page.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!