Extract values in Pandas value_counts()

爷,独闯天下 提交于 2019-11-29 20:20:25

Try this:

dataframe[column].value_counts().index.tolist()
['apple', 'sausage', 'banana', 'cheese']
#!/usr/bin/env python

import pandas as pd

# Make example dataframe
df = pd.DataFrame([(1, 'Germany'),
                   (2, 'France'),
                   (3, 'Indonesia'),
                   (4, 'France'),
                   (5, 'France'),
                   (6, 'Germany'),
                   (7, 'UK'),
                   ],
                  columns=['groupid', 'country'],
                  index=['a', 'b', 'c', 'd', 'e', 'f', 'g'])

# What you're looking for
values = df['country'].value_counts().keys().tolist()
counts = df['country'].value_counts().tolist()

Now, print(df['country'].value_counts()) gives:

France       3
Germany      2
UK           1
Indonesia    1

and print(values) gives:

['France', 'Germany', 'UK', 'Indonesia']

and print(counts) gives:

[3, 2, 1, 1]

If anyone missed it out in the comments, try this:

dataframe[column].value_counts().to_frame()

First you have to sort the dataframe by the count column max to min if it's not sorted that way already. In your post, it is in the right order already but I will sort it anyways:

dataframe.sort_index(by='count', ascending=[False])
    col     count
0   apple   5
1   sausage 2
2   banana  2
3   cheese  1 

Then you can output the col column to a list:

dataframe['col'].tolist()
['apple', 'sausage', 'banana', 'cheese']
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!