Say we have used pandas' dataframe[column].value_counts()
which outputs:
apple 5
sausage 2
banana 2
cheese 1
How do you extract the values from this in the order shown above e.g. max to min ?
[apple,sausage,banana,cheese]
Try this:
dataframe[column].value_counts().index.tolist()
['apple', 'sausage', 'banana', 'cheese']
#!/usr/bin/env python
import pandas as pd
# Make example dataframe
df = pd.DataFrame([(1, 'Germany'),
(2, 'France'),
(3, 'Indonesia'),
(4, 'France'),
(5, 'France'),
(6, 'Germany'),
(7, 'UK'),
],
columns=['groupid', 'country'],
index=['a', 'b', 'c', 'd', 'e', 'f', 'g'])
# What you're looking for
values = df['country'].value_counts().keys().tolist()
counts = df['country'].value_counts().tolist()
Now, print(df['country'].value_counts())
gives:
France 3
Germany 2
UK 1
Indonesia 1
and print(values)
gives:
['France', 'Germany', 'UK', 'Indonesia']
and print(counts)
gives:
[3, 2, 1, 1]
If anyone missed it out in the comments, try this:
dataframe[column].value_counts().to_frame()
First you have to sort
the dataframe
by the count
column max
to min
if it's not sorted that way already. In your post, it is in the right order already but I will sort
it anyways:
dataframe.sort_index(by='count', ascending=[False])
col count
0 apple 5
1 sausage 2
2 banana 2
3 cheese 1
Then you can output the col
column to a list:
dataframe['col'].tolist()
['apple', 'sausage', 'banana', 'cheese']
来源:https://stackoverflow.com/questions/35523635/extract-values-in-pandas-value-counts