二叉搜索树

笑着哭i 提交于 2019-11-29 19:20:20

更新、更全的《数据结构与算法》的更新网站,更有python、go、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11407287.html

一、什么是二叉搜索树

首先让我们回顾之前说过的查找问题:上次我们之讲过了静态查找,这次我们将通过二叉搜索树实现动态查找。但是针对动态查找,数据该如何组织呢?

二叉搜索树(BST,Binary Search Tree),也称二叉排序树或二叉查找树

二叉搜索树:一颗二叉树,可以为空;如果不为空,满足以下性质:

  1. 非空左子树的所有键值小于其根节点的键值
  2. 非空右子树的所有键值大于其根节点的键值
  3. 左、右子树都是二叉搜索树

二、二叉搜索操作的特别函数:

Position Find(ElementType X, BinTree BST):从二叉搜索树BST中查找元素X,返回其所在结点的地址;  Postion FindMin(BinTree BST):从二叉搜索树BST中查找并返回最小元素所在结点的地址;  Postion FindMax(BinTree BST):从二叉搜索树BST中查找并返回最大元素所在结点的地址;  BinTree Insert(ElementType X, BinTree BST)  BinTree Delete(ElementType X, BinTree BST)

三、二叉查找树的查找操作:Find

  • 查找从根节点开始,如果树为空,返回NULL
  • 若搜索树非空,则根节点关键字和X进行比较,并进行不同处理:
    • X小于根节点键值,只需在左子树中继续搜索
    • 如果X大于根节点的键值,在右子树中进行继续搜索
    • 若两者比较结果是相等,搜索完成,返回指向此结点的指针

/* c语言实现 */  Position Find(ElementType X, BinTree BST) {   if (!BST) return NULL; // 查找失败   if (X > BST->Data)     return Find(X, BST->Right); // 在右子树中继续查找 // 尾递归   else if (X < BST->Data)     return Find(X, BST->Left); // 在左子树中继续查找 // 尾递归   else // X == BST->Data     reutrn BST; // 查找成功,返回结点的找到结点的地址 }
# python语言实现  def find(self, root, val):   '''二叉搜索树查询操作'''   if root == None:     return False   if root.val == val:     return True   elif val < root.val:     return self.query(root.left, val)   elif val > root.val:     return self.query(root.right, val)

由于上述非递归函数的执行效率高,可将“尾递归”函数改为迭代函数

/* c语言实现 */  Position IterFind(ElementType X, BinTree BST) {   while (BST){     if (X > BST->Data)       BST = BST->Right; // 向右子树中移动,继续查找     else if (X < BST->Data)       BST = BST->Left; // 向左子树中移动,继续查找     else // X == BST->Data       return BST; // 查找成功,返回结点的找到结点的地址   }   reuturn NULL; // 查找失败 }
# python语言实现  def iter_find(self, root, val):         '''二叉搜索树查询操作'''     while root:         if root.val == val:             return root         elif val < root.val:             root = root.left         elif val > root.val:             root = root.right         if root == None:                 return False

查找效率决定于树的高度

四、查找最大和最小元素

  • 从根节点开始,沿着右子树一直往下,直到找到最后一个右子树节点,最大元素一定是在树的最右分支的端结点
  • 从根节点开始,沿着左子树一直往下,直到找到最后一个左子树节点,最小元素一定是在树的最左分支的端结点

/* c语言实现 */  // 查找最小元素的递归函数 Position FindMin(BinTree BST) {   if (!BST) return NULL; // 空的二叉搜索树,返回NULL   else if (!BST->Left)     reuturn BST; // 找到最左叶结点并返回   else     return FindMin(BST->Left); // 沿左分支继续查找 }    // 查找最大元素的迭代函数 Postion FindMax(BinTree BST) {   if (BST)     while (BST->Right) BS = BST->Right; // 沿右分支继续查找,直到最右叶结点   return BST; }
# python语言实现  # 查找最小值 def findMin(self, root):         '''查找二叉搜索树中最小值点'''         if root.left:             return self.findMin(root.left)         else:             return root  # 查找最大值 def findMax(self, root):         '''查找二叉搜索树中最大值点'''         if root.right:             return self.findMax(root.right)         else:             return root

五、二叉搜索树的插入

分析:关键是要找到元素应该插入的位置,可以采用与Find类似的方法。

/* c语言实现 */  BinTree Insert(ElementType X, BinTree BST) {   if (!BST){ // 若原树为空,生成并返回一个结点的二叉搜索树     BST = malloc(sizeof(struct TreeNode));     BST->Data = X;     BST->Left = BST->Right = NULL;   }else // 开始找要插入元素的位置     if (X < BST->Data)       BST->Left = Insert(X, BST->Left); // 递归插入左子树     else if (X > BST->Data)       BST->Right = Insert(X, BST->Right); // 递归插入右子树         // else X已经存在,什么都不做   return BST; }
# python语言实现  def insert(self, root, val):         '''二叉搜索树插入操作'''         if root == None:             root = TreeNode(val)         elif val < root.val:             root.left = self.insert(root.left, val)         elif val > root.val:             root.right = self.insert(root.right, val)         return root

例:以一年十二个月的英文缩写为键值,按从一月到十二月顺序输入(以第一个字母、第二个字母的顺序),即输入序列为(Jan, Feb, Mar, Apr, May, Jun, July, Aug, Sep, Oct, Nov, Dec)

六、二叉搜索树的删除

考虑三种情况

6.1 删除的是叶结点

直接删除,并再修改其父结点指针——置为NULL

以删除35举例:

6.2 删除的结点只有一个孩子结点

以删除33举例

6.3 删除的结点有左右子树

用另一结点替代被删除结点:右子树的最小元素或者左子树的最大元素

以删除41举例

下图为右子树的最小元素替代:

下图为左子树的最大元素替代:

/* c语言实现 */  BinTree Delete(ElementType X, BinTree BST) {   Position Tmp;   if (!BST) printf("要删除的元素未找到");   else if (X < BST->Data)     BST->Left = Delete(X, BST->Left); // 左子树递归删除   else if (X > BST->Data)     BST->Right = Delete(X, BST->Right); // 右子树递归删除   else // 找到要删除的结点     if (BST->Left && BST->Right){ // 被删除结点有左右两个子结点       Tmp = FindMin(BST->Right); // 在右子树中找最小的元素填充删除结点       BST->Data = Tmp->Data;       BST->Right = Delete(BST->Data, BST->Right); // 在删除结点的右子树中删除最小元素     } else { // 被删除结点有一个或无子结点       Tmp = BST;       if (!BST->Left)         BST = BST->Right; // 有右孩子或无子结点       else if (!BST->Right)          BST = BST->Left; // 有左孩子或无子结点       fee(Tmp);     }   return BST; }
# python语言实现  def delNode(self, root, val):         '''删除二叉搜索树中值为val的点'''         if root == None:             return          if val < root.val:             root.left = self.delNode(root.left, val)         elif val > root.val:             root.right = self.delNode(root.right, val)         # 当val == root.val时,分为三种情况:只有左子树或者只有右子树、有左右子树、即无左子树又无右子树         else:             if root.left and root.right:                 # 既有左子树又有右子树,则需找到右子树中最小值节点                 temp = self.findMin(root.right)                 root.val = temp.val                 # 再把右子树中最小值节点删除                 root.right = self.delNode(root.right, temp.val)             elif root.right == None and root.left == None:                 # 左右子树都为空                 root = None             elif root.right == None:                 # 只有左子树                 root = root.left             elif root.left == None:                 # 只有右子树                 root = root.right         return root

七、Python递归实现-二叉搜索树

# python语言实现  class Node(object):     def __init__(self, element):         self.element = element         self.lchild = None         self.rchild = None   class Tree(object):     def __init__(self, root=None):         self.root = root      def add(self, cur, item):         if item < cur.element:             if cur.lchild:                 self.add(cur.lchild, item)             else:                 cur.lchild = Node(item)         else:             if cur.rchild:                 self.add(cur.rchild, item)             else:                 cur.rchild = Node(item)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!