Remove/collapse consecutive duplicate values in sequence

左心房为你撑大大i 提交于 2019-11-26 09:45:36

问题


I have the following dataframe:

a a a b c c d e a a b b b e e d d

The required result should be

a b c d e a b e d 

It means no two consecutive rows should have same value. How it can be done without using loop.

As my data set is quite huge, looping is taking lot of time to execute.

The dataframe structure is like the following

a 1 
a 2
a 3
b 2
c 4
c 1
d 3
e 9
a 4
a 8
b 10
b 199
e 2
e 5
d 4
d 10

Result:

a 1 
b 2
c 4
d 3
e 9
a 4
b 10
e 2
d 4

Its should delete the entire row.


回答1:


One easy way is to use rle:

Here's your sample data:

x <- scan(what = character(), text = "a a a b c c d e a a b b b e e d d")
# Read 17 items

rle returns a list with two values: the run length ("lengths"), and the value that is repeated for that run ("values").

rle(x)$values
# [1] "a" "b" "c" "d" "e" "a" "b" "e" "d"

Update: For a data.frame

If you are working with a data.frame, try something like the following:

## Sample data
mydf <- data.frame(
  V1 = c("a", "a", "a", "b", "c", "c", "d", "e", 
         "a", "a", "b", "b", "e", "e", "d", "d"),
  V2 = c(1, 2, 3, 2, 4, 1, 3, 9, 
         4, 8, 10, 199, 2, 5, 4, 10)
)

## Use rle, as before
X <- rle(mydf$V1)
## Identify the rows you want to keep
Y <- cumsum(c(1, X$lengths[-length(X$lengths)]))
Y
# [1]  1  4  5  7  8  9 11 13 15
mydf[Y, ]
#    V1 V2
# 1   a  1
# 4   b  2
# 5   c  4
# 7   d  3
# 8   e  9
# 9   a  4
# 11  b 10
# 13  e  2
# 15  d  4

Update 2

The "data.table" package has a function rleid that lets you do this quite easily. Using mydf from above, try:

library(data.table)
as.data.table(mydf)[, .SD[1], by = rleid(V1)]
#    rleid V2
# 1:     1  1
# 2:     2  2
# 3:     3  4
# 4:     4  3
# 5:     5  9
# 6:     6  4
# 7:     7 10
# 8:     8  2
# 9:     9  4



回答2:


library(dplyr)
x <- c("a", "a", "a", "b", "c", "c", "d", "e", "a", "a", "b", "b", "b", "e", "e", "d", "d")
x[x!=lag(x, default=1)]
#[1] "a" "b" "c" "d" "e" "a" "b" "e" "d"

EDIT: For data.frame

  mydf <- data.frame(
    V1 = c("a", "a", "a", "b", "c", "c", "d", "e", 
         "a", "a", "b", "b", "e", "e", "d", "d"),
    V2 = c(1, 2, 3, 2, 4, 1, 3, 9, 
         4, 8, 10, 199, 2, 5, 4, 10),
   stringsAsFactors=FALSE)

dplyr solution is one liner:

mydf %>% filter(V1!= lag(V1, default="1"))
#  V1 V2
#1  a  1
#2  b  2
#3  c  4
#4  d  3
#5  e  9
#6  a  4
#7  b 10
#8  e  2
#9  d  4

post scriptum

lead(x,1) suggested by @Carl Witthoft iterates in reverse order.

leadit<-function(x) x!=lead(x, default="what")
rows <- leadit(mydf[ ,1])
mydf[rows, ]

#   V1  V2
#3   a   3
#4   b   2
#6   c   1
#7   d   3
#8   e   9
#10  a   8
#12  b 199
#14  e   5
#16  d  10



回答3:


With base R, I like funny algorithmics:

x <- c("a", "a", "a", "b", "c", "c", "d", "e", "a", "a", "b", "b", "b", "e", "e", "d", "d")

x[x!=c(x[-1], FALSE)]
#[1] "a" "b" "c" "d" "e" "a" "b" "e" "d"



回答4:


Much as I like,... errr, love rle , here's a shootoff:

EDIT: Can't figure out exactly what's up with dplyr so I used dplyr::lead . I'm on OSX, R3.1.2, and latest dplyr from CRAN.

xlet<-sample(letters,1e5,rep=T)
rleit<-function(x) rle(x)$values
lagit<-function(x) x[x!=lead(x, default=1)]
tailit<-function(x) x[x!=c(tail(x,-1), tail(x,1))]



  microbenchmark(rleit(xlet),lagit(xlet),tailit(xlet),times=20)
Unit: milliseconds
         expr      min       lq   median       uq      max neval
  rleit(xlet) 27.43996 30.02569 30.20385 30.92817 37.10657    20
  lagit(xlet) 12.44794 15.00687 15.14051 15.80254 46.66940    20
 tailit(xlet) 12.48968 14.66588 14.78383 15.32276 55.59840    20


来源:https://stackoverflow.com/questions/27482712/remove-collapse-consecutive-duplicate-values-in-sequence

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!