Closest pair for any of a huge number of points

久未见 提交于 2019-11-29 17:18:20

The traditional approach is to preprocess the data and put it in a data structure, often a K-d tree, for which the "nearest point" query is very fast.

There is an implementation in the nnclust package.

library(nnclust)
foo <- cbind(x=c(1,2,4,4,10),y=c(1,2,4,4,10))
i <- nnfind(foo)$neighbour
plot(foo)
arrows( foo[,1], foo[,2], foo[i,1], foo[i,2] )

Here is an example; all wrapped into a single function. You might want to split it a bit for optimization.

ClosesPair <- function(foo) {
  dist <- function(i, j) {
    sqrt((foo[i,1]-foo[j,1])**2 + (foo[i,2]-foo[j,2])**2)
  }

  foo <- as.matrix(foo)

  ClosestPoint <- function(i) {  
    indices <- 1:nrow(foo)
    indices <- indices[-i]

    distances <- sapply(indices, dist, i=i, USE.NAMES=TRUE)

    closest <- indices[which.min(distances)]
  }

  sapply(1:nrow(foo), ClosestPoint)
}
ClosesPair(foo)
# [1] 2 1 4 3 3

Of cause, it does not handle ties very well.

Use the package spatstat . It's got builtin functions to do this sort of stuff.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!