SparklyR separate one Spark DataFrame column into two columns

坚强是说给别人听的谎言 提交于 2019-11-29 16:15:32

You can use ft_regex_tokenizer followed by sdf_separate_column.

ft_regex_tokenizer will split a column into a vector type, based on a regex. sdf_separate_column will split this into multiple columns.

mydf %>% 
    ft_regex_tokenizer(input_col="mycolumn", output_col="mycolumnSplit", pattern=";") %>% 
    sdf_separate_column("mycolumnSplit", into=c("column1", "column2")

UPDATE: in recent versions of sparklyr, the parameters input.col and output.col have been renamed to input_col and output_col, respectively.

Sparklyr version 0.5 has just been released, and it contains the ft_regex_tokenizer() function that can do that:

A regex based tokenizer that extracts tokens either by using the provided regex pattern to split the text (default) or repeatedly matching the regex (if gaps is false).

library(dplyr)
library(sparklyr)
ft_regex_tokenizer(input_DF, input.col = "COL", output.col = "ResultCols", pattern = '\\###')

The splitted column "ResultCols" will be a list.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!