Cluster center mean of DBSCAN in R?

我是研究僧i 提交于 2019-11-29 15:11:11

Just index back into the original data using the cluster ID of your choice. Then you can easily do whatever further processing you want to the subset. Here is an example:

library(fpc)

n = 100
set.seed(12345)
data = matrix(rnorm(n*3), nrow=n)
data.ds = dbscan(data, 0.5)
> data.ds
dbscan Pts=100 MinPts=5 eps=0.5
        0 1 2 3
seed    0 1 3 1
border 83 4 4 4
total  83 5 7 5
> colMeans(data[data.ds$cluster==0, ])
[1]  0.28521404 -0.02804152 -0.06836167

You need to understand that as DBSCAN looks for arbitrarily shaped clusters, the mean can be well outside of the cluster. Looking at means of DBSCAN clusters therefore is not really sensible.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!