Diff between two dataframes in pandas

佐手、 提交于 2019-11-29 11:47:04

IIUC:
You can use pd.Index.symmetric_difference

pd.concat([df1, df2]).loc[
    df1.index.symmetric_difference(df2.index)
]

Try this:

diff_df = pd.merge(df1, df2, how='outer', indicator='Exist')

diff_df = diff_df.loc[diff_df['Exist'] != 'both']

You will have a dataframe of all rows that don't exist on both df1 and df2.

  1. Set df2.columns = df1.columns

  2. Now, set every column as the index: df1 = df1.set_index(df1.columns.tolist()), and similarly for df2.

  3. You can now do df1.index.difference(df2.index), and df2.index.difference(df1.index), and the two results are your distinct columns.

You can use this function, the output is an ordered dict of 6 dataframes which you can write to excel for further analysis.

  • 'df1' and 'df2' refers to your input dataframes.
  • 'uid' refers to the column or combination of columns that make up the unique key. (i.e. 'Fruits')
  • 'dedupe' (default=True) drops duplicates in df1 and df2. (refer to Step 4 in comments)
  • 'labels' (default = ('df1','df2')) allows you to name the input dataframes. If a unique key exists in both dataframes, but have different values in one or more columns, it is usually important to know these rows, put them one on top of the other and label the row with the name so we know to which dataframe does it belong to.
  • 'drop' can take a list of columns to be excluded from the consideration when considering the difference

Here goes:

df1 = pd.DataFrame([['apple', '1'], ['banana', 2], ['coconut',3]], columns=['Fruits','Quantity'])
df2 = pd.DataFrame([['apple', '1'], ['banana', 3], ['durian',4]], columns=['Fruits','Quantity'])
dict1 = diff_func(df1, df2, 'Fruits')

In [10]: dict1['df1_only']:
Out[10]:
    Fruits Quantity
1  coconut        3

In [11]: dict1['df2_only']:
Out[11]:
   Fruits Quantity
3  durian        4

In [12]: dict1['Diff']:
Out[12]:
   Fruits Quantity df1 or df2
0  banana        2        df1
1  banana        3        df2

In [13]: dict1['Merge']:
Out[13]:
  Fruits Quantity
0  apple        1

Here is the code:

import pandas as pd
from collections import OrderedDict as od

def diff_func(df1, df2, uid, dedupe=True, labels=('df1', 'df2'), drop=[]):
    dict_df = {labels[0]: df1, labels[1]: df2}
    col1 = df1.columns.values.tolist()
    col2 = df2.columns.values.tolist()

    # There could be columns known to be different, hence allow user to pass this as a list to be dropped.
    if drop:
        print ('Ignoring columns {} in comparison.'.format(', '.join(drop)))
        col1 = list(filter(lambda x: x not in drop, col1))
        col2 = list(filter(lambda x: x not in drop, col2))
        df1 = df1[col1]
        df2 = df2[col2]


    # Step 1 - Check if no. of columns are the same:
    len_lr = len(col1), len(col2)
    assert len_lr[0]==len_lr[1], \
    'Cannot compare frames with different number of columns: {}.'.format(len_lr)

    # Step 2a - Check if the set of column headers are the same
    #           (order doesnt matter)
    assert set(col1)==set(col2), \
    'Left column headers are different from right column headers.' \
       +'\n   Left orphans: {}'.format(list(set(col1)-set(col2))) \
       +'\n   Right orphans: {}'.format(list(set(col2)-set(col1)))

    # Step 2b - Check if the column headers are in the same order
    if col1 != col2:
        print ('[Note] Reordering right Dataframe...')
        df2 = df2[col1]

    # Step 3 - Check datatype are the same [Order is important]
    if set((df1.dtypes == df2.dtypes).tolist()) - {True}:
        print ('dtypes are not the same.')
        df_dtypes = pd.DataFrame({labels[0]:df1.dtypes,labels[1]:df2.dtypes,'Diff':(df1.dtypes == df2.dtypes)})
        df_dtypes = df_dtypes[df_dtypes['Diff']==False][[labels[0],labels[1],'Diff']]
        print (df_dtypes)
    else:
        print ('DataType check: Passed')

    # Step 4 - Check for duplicate rows
    if dedupe:
        for key, df in dict_df.items():
            if df.shape[0] != df.drop_duplicates().shape[0]:
                print(key + ': Duplicates exists, they will be dropped.')
                dict_df[key] = df.drop_duplicates()

    # Step 5 - Check for duplicate uids.
    if type(uid)==str or type(uid)==list:
        print ('Uniqueness check: {}'.format(uid))
        for key, df in dict_df.items():
            count_uid = df.shape[0]
            count_uid_unique = df[uid].drop_duplicates().shape[0]
            var = [0,1][count_uid_unique == df.shape[0]] #<-- Round off to the nearest integer if it is 100%
            pct = round(100*count_uid_unique/df.shape[0], var)
            print ('{}: {} out of {} are unique ({}%).'.format(key, count_uid_unique, count_uid, pct))

    # Checks complete, begin merge. '''Remenber to dedupe, provide labels for common_no_match'''
    dict_result = od()
    df_merge = pd.merge(df1, df2, on=col1, how='inner')
    if not df_merge.shape[0]:
        print ('Error: Merged DataFrame is empty.')
    else:
        dict_result[labels[0]] = df1
        dict_result[labels[1]] = df2
        dict_result['Merge'] = df_merge
        if type(uid)==str:
            uid = [uid]

        if type(uid)==list:
            df1_only = df1.append(df_merge).reset_index(drop=True)
            df1_only['Duplicated']=df1_only.duplicated(subset=uid, keep=False)  #keep=False, marks all duplicates as True
            df1_only = df1_only[df1_only['Duplicated']==False]
            df2_only = df2.append(df_merge).reset_index(drop=True)
            df2_only['Duplicated']=df2_only.duplicated(subset=uid, keep=False)
            df2_only = df2_only[df2_only['Duplicated']==False]

            label = labels[0]+' or '+labels[1]
            df_lc = df1_only.copy()
            df_lc[label] = labels[0]
            df_rc = df2_only.copy()
            df_rc[label] = labels[1]
            df_c = df_lc.append(df_rc).reset_index(drop=True)
            df_c['Duplicated'] = df_c.duplicated(subset=uid, keep=False)
            df_c1 = df_c[df_c['Duplicated']==True]
            df_c1 = df_c1.drop('Duplicated', axis=1)
            df_uc = df_c[df_c['Duplicated']==False]

            df_uc_left = df_uc[df_uc[label]==labels[0]]
            df_uc_right = df_uc[df_uc[label]==labels[1]]

            dict_result[labels[0]+'_only'] = df_uc_left.drop(['Duplicated', label], axis=1)
            dict_result[labels[1]+'_only'] = df_uc_right.drop(['Duplicated', label], axis=1)
            dict_result['Diff'] = df_c1.sort_values(uid).reset_index(drop=True)

    return dict_result

with

left_df.merge(df,left_on=left_df.columns.tolist(),right_on=df.columns.tolist(),how='outer')

you can get the outer join result.
Similarly, you can get the inner join result.Then make a diff that would be what you want.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!