Gather multiple date/value columns using tidyr

↘锁芯ラ 提交于 2019-11-29 11:30:13

There should be some efficient way, but this is one way.

Working separately for date and value,

#for date
df.date<-df%>%select(id, age,date1,date2, date3)%>%melt(id.var=c("id", "age"), value.name="date")
#for val
df.val<-df%>%select(id, age,value1,value2, value3)%>%melt(id.var=c("id", "age"), value.name="value")

Now join,

df2<-full_join(df.date, df.val, by=c("id", "age"))
df2%>%select(-variable.x, -variable.y)

 id age       date value
1   1  40 2015-07-19    28
2   1  40 2015-07-19    49
3   1  40 2015-07-19    24
4   2  33 2015-06-27    99
5   2  33 2015-06-27    18
6   2  33 2015-06-27    26
7   3  75 2015-07-07    63
8   3  75 2015-07-07    74
9   3  75 2015-07-07    72

I stumbled across this trying to learn about using gather with a mix of dates and values.

The existing answers lose information about which instance the date-value pair came from, ie, instance 1 for date1 & value1, etc. This may not be important, but here's a tidyverse option that keeps the instance.

library(stringr) # not necessary but nice
library(tidyr)
library(dplyr)

df %>% 
    gather(key, val, -id, -age) %>% 
    mutate(
        measure = str_sub(key,1,-2), 
        instance = str_sub(key, -1)
    ) %>% 
    select(-key) %>% 
    spread(measure, val) %>% 
    mutate(date = as.Date(date, origin="1970-01-01")) # restore date class

I had the exact same question and data format for a dataset I was working on. Crowdsourced the answer at work. A couple of us came up with a single tidyr and dplyr pipeline solution. Using the same simulated df from original question.

df %>%
    gather(key = date_position, value = date, starts_with("date")) %>%
    gather(key = value_position, value = value, starts_with("value")) %>%
    mutate(date_position = gsub('[^0-9]', "", date_position),
           value_position = gsub('[^0-9]', "", value_position)) %>%
    filter(date_position == value_position) %>%
    select(-ends_with("position")) %>%
    arrange(id)

The same strategy but using tidyr instead looks as follows:

df.value <- df %>%
    gather(key="foo", value="value", starts_with("value"))
df.date <- df %>%
    gather(key="bar", value="date", starts_with("date"))

After controlling the resulting dimensions (careful with NA values - there is also a na.rm argument to the gather function) I joined the data.frames using base/dplyr functions:

df.long <- data.frame(select(df.value, id, age, value), select(df.date, date))

I am certain there is a much more elgant way to both parts, but it did the trick.

This does a reshape and then sorts the rows.

The first two lines just set up the v.names and varying arguments to reshape. v.names defines the new column names and varying, is a list whose two components contain logical selection vectors of the date and value columns respectively.

The last line of code does the sorting and can be omitted if the row order does not matter.

No packages are used.

v.names <- c("date", "value")
varying <- lapply(v.names, startsWith, x = names(df))
r <- reshape(df, dir = "long", varying = varying, v.names = v.names)
r[order(r$id, r$time), ]

giving the following where the id and time columns relate the output rows back to the input:

     id age time       date value
1.1   1  12    1 2015-08-14     3
1.2   1  12    2 2015-07-11    24
1.3   1  12    3 2015-07-04     4
2.1   2  92    1 2015-08-03    17
2.2   2  92    2 2015-07-19    52
2.3   2  92    3 2015-07-01    93
3.1   3  28    1 2015-08-24    86
3.2   3  28    2 2015-08-12    80
3.3   3  28    3 2015-09-01    56
4.1   4  45    1 2015-09-13    78
4.2   4  45    2 2015-07-07    92
4.3   4  45    3 2015-08-10    81
5.1   5  25    1 2015-08-27    95
5.2   5  25    2 2015-09-08    68
5.3   5  25    3 2015-06-27    82
6.1   6   1    1 2015-08-21    16
6.2   6   1    2 2015-06-15    35
6.3   6   1    3 2015-07-24    30
7.1   7   7    1 2015-07-19    59
7.2   7   7    2 2015-07-08    33
7.3   7   7    3 2015-08-11    49
8.1   8  71    1 2015-07-28    19
8.2   8  71    2 2015-06-29    74
8.3   8  71    3 2015-08-05    25
9.1   9  59    1 2015-07-05    64
9.2   9  59    2 2015-09-04    30
9.3   9  59    3 2015-07-30    74
10.1 10  96    1 2015-09-12    69
10.2 10  96    2 2015-07-23    72
10.3 10  96    3 2015-08-19    23
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!