题意:
已知\(n\)个数字,进行以下操作:
- \(1.\)区间\([L,R]\) 按位与\(x\)
- \(2.\)区间\([L,R]\) 按位或\(x\)
\(3.\)区间\([L,R]\) 询问最大值
思路:
吉司机线段树。
我们按位考虑,维护区间或\(\_or\)和区间与\(\_and\),那么得到区间非公有的\(1\)为\((\_or \oplus \_and)\),那么如果对所有的非公有的\(1\)影响都一样就不会对最大值有影响,那么就直接打标机,否则继续往下更新。即
\[ [(\_or[rt] \oplus \_and[rt]) \& x] == 0 || [(\_or[rt] \oplus \_and[rt]) \& x] == (\_or[rt] \oplus \_and[rt]) \]
时就直接打标机。代码:
#include<map> #include<set> #include<queue> #include<cmath> #include<stack> #include<ctime> #include<vector> #include<cstdio> #include<string> #include<cstring> #include<sstream> #include<iostream> #include<algorithm> typedef long long ll; typedef unsigned long long ull; using namespace std; const int maxn = 2e5 + 5; const int MAXM = 3e6; const ll MOD = 998244353; const ull seed = 131; const int INF = 0x3f3f3f3f; #define lson (rt << 1) #define rson (rt << 1 | 1) inline bool read(int &num){ char in; bool IsN=false; in = getchar(); if(in == EOF) return false; while(in != '-' && (in < '0' || in > '9')) in = getchar(); if(in == '-'){ IsN = true; num = 0;} else num = in - '0'; while(in = getchar(),in >= '0' && in <= '9'){ num *= 10, num += in-'0'; } if(IsN) num = -num; return true; } int a[maxn], all = (1 << 21) - 1; int _or[maxn << 2], _and[maxn << 2], Max[maxn << 2]; int lazya[maxn << 2], lazyo[maxn << 2]; inline void pushup(int rt){ _or[rt] = _or[lson] | _or[rson]; _and[rt] = _and[lson] & _and[rson]; Max[rt] = max(Max[lson], Max[rson]); } inline void pushdown(int rt, int l, int r){ int m = (l + r) >> 1; if(lazya[rt] != all){ Max[lson] &= lazya[rt]; Max[rson] &= lazya[rt]; _or[lson] &= lazya[rt]; _or[rson] &= lazya[rt]; _and[lson] &= lazya[rt]; _and[rson] &= lazya[rt]; lazya[lson] &= lazya[rt]; lazya[rson] &= lazya[rt]; lazyo[lson] &= lazya[rt]; lazyo[rson] &= lazya[rt]; lazya[rt] = all; } if(lazyo[rt] != 0){ Max[lson] |= lazyo[rt]; Max[rson] |= lazyo[rt]; _or[lson] |= lazyo[rt]; _or[rson] |= lazyo[rt]; _and[lson] |= lazyo[rt]; _and[rson] |= lazyo[rt]; lazya[lson] |= lazyo[rt]; lazya[rson] |= lazyo[rt]; lazyo[lson] |= lazyo[rt]; lazyo[rson] |= lazyo[rt]; lazyo[rt] = 0; } } void build(int l, int r, int rt){ lazya[rt] = all, lazyo[rt] = 0; if(l == r){ _and[rt] = _or[rt] = Max[rt] = a[l]; return; } int m = (l + r) >> 1; build(l, m, lson); build(m + 1, r, rson); pushup(rt); } void update(int L, int R, int l, int r, int op, int x, int rt){ if(L <= l && R >= r){ if(op == 1){ //& if(((_or[rt] ^ _and[rt]) & x) == 0 || ((_or[rt] ^ _and[rt]) & x) == (_or[rt] ^ _and[rt])){ Max[rt] &= x; _or[rt] &= x; _and[rt] &= x; lazya[rt] &= x; lazyo[rt] &= x; return; } } else{ //| if(((_or[rt] ^ _and[rt]) & x) == 0 || ((_or[rt] ^ _and[rt]) & x) == (_or[rt] ^ _and[rt])){ Max[rt] |= x; _or[rt] |= x; _and[rt] |= x; lazya[rt] |= x; lazyo[rt] |= x; return; } } } int m = (l + r) >> 1; pushdown(rt, l, r); if(L <= m) update(L, R, l, m, op, x, lson); if(R > m) update(L, R, m + 1, r, op, x, rson); pushup(rt); } int query(int L, int R, int l, int r, int rt){ if(L <= l && R >= r){ return Max[rt]; } pushdown(rt, l, r); int m = (l + r) >> 1, MAX = -INF; if(L <= m) MAX = max(MAX, query(L, R, l, m, lson)); if(R > m) MAX = max(MAX, query(L, R, m + 1, r, rson)); return MAX; } int main(){ int n, m; read(n), read(m); for(int i = 1; i <= n; i++) read(a[i]); build(1, n, 1); while(m--){ int op, l, r, x; read(op), read(l), read(r); if(op < 3) read(x); if(op < 3){ update(l, r, 1, n, op, x, 1); } else{ printf("%d\n", query(l, r, 1, n, 1)); } } return 0; }