Calculate the area of a polygon drawn on google maps in an Android application

生来就可爱ヽ(ⅴ<●) 提交于 2019-11-29 08:50:26

There's already a library for that.

import com.google.maps.android.SphericalUtil;

//...

List<LatLng> latLngs = new ArrayList<>();
latLngs.add(new LatLng(51.893728, -8.491865));
latLngs.add(new LatLng(51.893550, -8.492479));
latLngs.add(new LatLng(51.893216, -8.492224));
latLngs.add(new LatLng(51.893404, -8.491598));
Log.i(TAG, "computeArea " + SphericalUtil.computeArea(latLngs));

For me the output is computeArea 1920.8879882782069

If you want to use SphericalUtils code without any library, you can use following code. it's taken from opensource code from SphericalUtils.java and other class. I have taken this code and used it as i was using MapBox and MapBox does not have implemented the calculateArea function in Turf.

import java.util.List;

import pojo.LatLng;

import static java.lang.Math.PI;
import static java.lang.Math.abs;
import static java.lang.Math.atan2;
import static java.lang.Math.cos;
import static java.lang.Math.sin;
import static java.lang.Math.tan;
import static java.lang.Math.toRadians;

public class PolygonUtils {

    /**
     * The earth's radius, in meters.
     * Mean radius as defined by IUGG.
     */
    static final double EARTH_RADIUS = 6371009;

    /**
     * Returns the area of a closed path on Earth.
     * @param path A closed path.
     * @return The path's area in square meters.
     */
    public static double computeArea(List<LatLng> path) {
        return abs(computeSignedArea(path,EARTH_RADIUS));
    }

    /**
     * Returns the signed area of a closed path on a sphere of given radius.
     * The computed area uses the same units as the radius squared.
     * Used by SphericalUtilTest.
     */
    static double computeSignedArea(List<LatLng> path, double radius) {
        int size = path.size();
        if (size < 3) { return 0; }
        double total = 0;
        LatLng prev = path.get(size - 1);
        double prevTanLat = tan((PI / 2 - toRadians(prev.getLatitude())) / 2);
        double prevLng = toRadians(prev.getLongitude());
        // For each edge, accumulate the signed area of the triangle formed by the North Pole
        // and that edge ("polar triangle").
        for (LatLng point : path) {
            double tanLat = tan((PI / 2 - toRadians(point.getLatitude())) / 2);
            double lng = toRadians(point.getLongitude());
            total += polarTriangleArea(tanLat, lng, prevTanLat, prevLng);
            prevTanLat = tanLat;
            prevLng = lng;
        }
        return total * (radius * radius);
    }

    /**
     * Returns the signed area of a triangle which has North Pole as a vertex.
     * Formula derived from "Area of a spherical triangle given two edges and the included angle"
     * as per "Spherical Trigonometry" by Todhunter, page 71, section 103, point 2.
     * See http://books.google.com/books?id=3uBHAAAAIAAJ&pg=PA71
     * The arguments named "tan" are tan((pi/2 - latitude)/2).
     */
    private static double polarTriangleArea(double tan1, double lng1, double tan2, double lng2) {
        double deltaLng = lng1 - lng2;
        double t = tan1 * tan2;
        return 2 * atan2(t * sin(deltaLng), 1 + t * cos(deltaLng));
    }
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!