calculate the mean for each column of a matrix in R

有些话、适合烂在心里 提交于 2019-11-26 08:45:51

You can use colMeans:

### Sample data
set.seed(1)
m <- data.frame(matrix(sample(100, 20, replace = TRUE), ncol = 4))

### Your error
mean(m)
# [1] NA
# Warning message:
# In mean.default(m) : argument is not numeric or logical: returning NA

### The result using `colMeans`
colMeans(m)
#   X1   X2   X3   X4 
# 47.0 64.4 44.8 67.8 

You can use 'apply' to run a function or the rows or columns of a matrix or numerical data frame:

cluster1 <- data.frame(a=1:5, b=11:15, c=21:25, d=31:35)

apply(cluster1,2,mean)  # applies function 'mean' to 2nd dimension (columns)

apply(cluster1,1,mean)  # applies function to 1st dimension (rows)

sapply(cluster1, mean)  # also takes mean of columns, treating data frame like list of vectors
Gonzalo user7334982

In case you have NA's:

sapply(data, mean, na.rm = T)      # Returns a vector (with names)   
lapply(data, mean, na.rm = T)      # Returns a list  

Remember that "mean" needs numeric data. If you have mixed class data, then use:

numdata<-data[sapply(data, is.numeric)]  
sapply(numdata, mean, na.rm = T)  # Returns a vector
lapply(numdata, mean, na.rm = T)  # Returns a list  

Another way is to use purrr package

# example data like what is said above

@A Handcart And Mohair

set.seed(1)
m <- data.frame(matrix(sample(100, 20, replace = TRUE), ncol = 4))


library(purrr)
means <- map_dbl(m, mean)

> means
#  X1   X2   X3   X4 
#47.0 64.4 44.8 67.8 

For diversity: Another way is to converts a vector function to one that works with data frames by using plyr::colwise()

set.seed(1)
m <- data.frame(matrix(sample(100, 20, replace = TRUE), ncol = 4))

plyr::colwise(mean)(m)


#   X1   X2   X3   X4
# 1 47 64.4 44.8 67.8
weijia

You can try this:

mean(as.matrix(cluster1))
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!