Performing Breadth First Search recursively

一个人想着一个人 提交于 2019-11-26 08:43:49

问题


Let\'s say you wanted to implement a breadth-first search of a binary tree recursively. How would you go about it?

Is it possible using only the call-stack as auxiliary storage?


回答1:


(I'm assuming that this is just some kind of thought exercise, or even a trick homework/interview question, but I suppose I could imagine some bizarre scenario where you're not allowed any heap space for some reason [some really bad custom memory manager? some bizarre runtime/OS issues?] while you still have access to the stack...)

Breadth-first traversal traditionally uses a queue, not a stack. The nature of a queue and a stack are pretty much opposite, so trying to use the call stack (which is a stack, hence the name) as the auxiliary storage (a queue) is pretty much doomed to failure, unless you're doing something stupidly ridiculous with the call stack that you shouldn't be.

On the same token, the nature of any non-tail recursion you try to implement is essentially adding a stack to the algorithm. This makes it no longer breadth first search on a binary tree, and thus the run-time and whatnot for traditional BFS no longer completely apply. Of course, you can always trivially turn any loop into a recursive call, but that's not any sort of meaningful recursion.

However, there are ways, as demonstrated by others, to implement something that follows the semantics of BFS at some cost. If the cost of comparison is expensive but node traversal is cheap, then as @Simon Buchan did, you can simply run an iterative depth-first search, only processing the leaves. This would mean no growing queue stored in the heap, just a local depth variable, and stacks being built up over and over on the call stack as the tree is traversed over and over again. And as @Patrick noted, a binary tree backed by an array is typically stored in breadth-first traversal order anyway, so a breadth-first search on that would be trivial, also without needing an auxiliary queue.




回答2:


If you use an array to back the binary tree, you can determine the next node algebraically. if i is a node, then its children can be found at 2i + 1 (for the left node) and 2i + 2 (for the right node). A node's next neighbor is given by i + 1, unless i is a power of 2

Here's pseudocode for a very naive implementation of breadth first search on an array backed binary search tree. This assumes a fixed size array and therefore a fixed depth tree. It will look at parentless nodes, and could create an unmanageably large stack.

bintree-bfs(bintree, elt, i)
    if (i == LENGTH)
        return false

    else if (bintree[i] == elt)
        return true

    else 
        return bintree-bfs(bintree, elt, i+1)        



回答3:


I couldn't find a way to do it completely recursive (without any auxiliary data-structure). But if the queue Q is passed by reference, then you can have the following silly tail recursive function:

BFS(Q)
{
  if (|Q| > 0)
     v <- Dequeue(Q)
     Traverse(v)
     foreach w in children(v)
        Enqueue(Q, w)    

     BFS(Q)
}



回答4:


The following method used a DFS algorithm to get all nodes in a particular depth - which is same as doing BFS for that level. If you find out depth of the tree and do this for all levels, the results will be same as a BFS.

public void PrintLevelNodes(Tree root, int level) {
    if (root != null) {
        if (level == 0) {
            Console.Write(root.Data);
            return;
        }
        PrintLevelNodes(root.Left, level - 1);
        PrintLevelNodes(root.Right, level - 1);
    }
}

for (int i = 0; i < depth; i++) {
    PrintLevelNodes(root, i);
}

Finding depth of a tree is a piece of cake:

public int MaxDepth(Tree root) {
    if (root == null) {
        return 0;
    } else {
        return Math.Max(MaxDepth(root.Left), MaxDepth(root.Right)) + 1;
    }
}



回答5:


A simple BFS and DFS recursion in Java:
Just push/offer the root node of the tree in the stack/queue and call these functions.

public static void breadthFirstSearch(Queue queue) {

    if (queue.isEmpty())
        return;

    Node node = (Node) queue.poll();

    System.out.println(node + " ");

    if (node.right != null)
        queue.offer(node.right);

    if (node.left != null)
        queue.offer(node.left);

    breadthFirstSearch(queue);
}

public static void depthFirstSearch(Stack stack) {

    if (stack.isEmpty())
        return;

    Node node = (Node) stack.pop();

    System.out.println(node + " ");

    if (node.right != null)
        stack.push(node.right);

    if (node.left != null)
        stack.push(node.left);

    depthFirstSearch(stack);
}



回答6:


The dumb way:

template<typename T>
struct Node { Node* left; Node* right; T value; };

template<typename T, typename P>
bool searchNodeDepth(Node<T>* node, Node<T>** result, int depth, P pred) {
    if (!node) return false;
    if (!depth) {
        if (pred(node->value)) {
            *result = node;
        }
        return true;
    }
    --depth;
    searchNodeDepth(node->left, result, depth, pred);
    if (!*result)
        searchNodeDepth(node->right, result, depth, pred);
    return true;
}

template<typename T, typename P>
Node<T>* searchNode(Node<T>* node, P pred) {
    Node<T>* result = NULL;
    int depth = 0;
    while (searchNodeDepth(node, &result, depth, pred) && !result)
        ++depth;
    return result;
}

int main()
{
    // a c   f
    //  b   e
    //    d
    Node<char*>
        a = { NULL, NULL, "A" },
        c = { NULL, NULL, "C" },
        b = { &a, &c, "B" },
        f = { NULL, NULL, "F" },
        e = { NULL, &f, "E" },
        d = { &b, &e, "D" };

    Node<char*>* found = searchNode(&d, [](char* value) -> bool {
        printf("%s\n", value);
        return !strcmp((char*)value, "F");
    });

    printf("found: %s\n", found->value);

    return 0;
}



回答7:


I found a very beautiful recursive (even functional) Breadth-First traversal related algorithm. Not my idea, but i think it should be mentioned in this topic.

Chris Okasaki explains his breadth-first numbering algorithm from ICFP 2000 at http://okasaki.blogspot.de/2008/07/breadth-first-numbering-algorithm-in.html very clearly with only 3 pictures.

The Scala implementation of Debasish Ghosh, which i found at http://debasishg.blogspot.de/2008/09/breadth-first-numbering-okasakis.html, is:

trait Tree[+T]
case class Node[+T](data: T, left: Tree[T], right: Tree[T]) extends Tree[T]
case object E extends Tree[Nothing]

def bfsNumForest[T](i: Int, trees: Queue[Tree[T]]): Queue[Tree[Int]] = {
  if (trees.isEmpty) Queue.Empty
  else {
    trees.dequeue match {
      case (E, ts) =>
        bfsNumForest(i, ts).enqueue[Tree[Int]](E)
      case (Node(d, l, r), ts) =>
        val q = ts.enqueue(l, r)
        val qq = bfsNumForest(i+1, q)
        val (bb, qqq) = qq.dequeue
        val (aa, tss) = qqq.dequeue
        tss.enqueue[org.dg.collection.BFSNumber.Tree[Int]](Node(i, aa, bb))
    }
  }
}

def bfsNumTree[T](t: Tree[T]): Tree[Int] = {
  val q = Queue.Empty.enqueue[Tree[T]](t)
  val qq = bfsNumForest(1, q)
  qq.dequeue._1
}



回答8:


Here's a python implementation:

graph = {'A': ['B', 'C'],
         'B': ['C', 'D'],
         'C': ['D'],
         'D': ['C'],
         'E': ['F'],
         'F': ['C']}

def bfs(paths, goal):
    if not paths:
        raise StopIteration

    new_paths = []
    for path in paths:
        if path[-1] == goal:
            yield path

        last = path[-1]
        for neighbor in graph[last]:
            if neighbor not in path:
                new_paths.append(path + [neighbor])
    yield from bfs(new_paths, goal)


for path in bfs([['A']], 'D'):
    print(path)



回答9:


Here's a Scala 2.11.4 implementation of recursive BFS. I've sacrificed tail-call optimization for brevity, but the TCOd version is very similar. See also @snv's post.

import scala.collection.immutable.Queue

object RecursiveBfs {
  def bfs[A](tree: Tree[A], target: A): Boolean = {
    bfs(Queue(tree), target)
  }

  private def bfs[A](forest: Queue[Tree[A]], target: A): Boolean = {
    forest.dequeueOption exists {
      case (E, tail) => bfs(tail, target)
      case (Node(value, _, _), _) if value == target => true
      case (Node(_, l, r), tail) => bfs(tail.enqueue(List(l, r)), target)
    }
  }

  sealed trait Tree[+A]
  case class Node[+A](data: A, left: Tree[A], right: Tree[A]) extends Tree[A]
  case object E extends Tree[Nothing]
}



回答10:


The following seems pretty natural to me, using Haskell. Iterate recursively over levels of the tree (here I collect names into a big ordered string to show the path through the tree):

data Node = Node {name :: String, children :: [Node]}
aTree = Node "r" [Node "c1" [Node "gc1" [Node "ggc1" []], Node "gc2" []] , Node "c2" [Node "gc3" []], Node "c3" [] ]
breadthFirstOrder x = levelRecurser [x]
    where levelRecurser level = if length level == 0
                                then ""
                                else concat [name node ++ " " | node <- level] ++ levelRecurser (concat [children node | node <- level])



回答11:


Here is short Scala solution:

  def bfs(nodes: List[Node]): List[Node] = {
    if (nodes.nonEmpty) {
      nodes ++ bfs(nodes.flatMap(_.children))
    } else {
      List.empty
    }
  }

Idea of using return value as accumulator is well suited. Can be implemented in other languages in similar way, just make sure that your recursive function process list of nodes.

Test code listing (using @marco test tree):

import org.scalatest.FlatSpec

import scala.collection.mutable

class Node(val value: Int) {

  private val _children: mutable.ArrayBuffer[Node] = mutable.ArrayBuffer.empty

  def add(child: Node): Unit = _children += child

  def children = _children.toList

  override def toString: String = s"$value"
}

class BfsTestScala extends FlatSpec {

  //            1
  //          / | \
  //        2   3   4
  //      / |       | \
  //    5   6       7  8
  //  / |           | \
  // 9  10         11  12
  def tree(): Node = {
    val root = new Node(1)
    root.add(new Node(2))
    root.add(new Node(3))
    root.add(new Node(4))
    root.children(0).add(new Node(5))
    root.children(0).add(new Node(6))
    root.children(2).add(new Node(7))
    root.children(2).add(new Node(8))
    root.children(0).children(0).add(new Node(9))
    root.children(0).children(0).add(new Node(10))
    root.children(2).children(0).add(new Node(11))
    root.children(2).children(0).add(new Node(12))
    root
  }

  def bfs(nodes: List[Node]): List[Node] = {
    if (nodes.nonEmpty) {
      nodes ++ bfs(nodes.flatMap(_.children))
    } else {
      List.empty
    }
  }

  "BFS" should "work" in {
    println(bfs(List(tree())))
  }
}

Output:

List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)



回答12:


I had to implement a heap traversal which outputs in a BFS order. It isn't actually BFS but accomplishes the same task.

private void getNodeValue(Node node, int index, int[] array) {
    array[index] = node.value;
    index = (index*2)+1;

    Node left = node.leftNode;
    if (left!=null) getNodeValue(left,index,array);
    Node right = node.rightNode;
    if (right!=null) getNodeValue(right,index+1,array);
}

public int[] getHeap() {
    int[] nodes = new int[size];
    getNodeValue(root,0,nodes);
    return nodes;
}



回答13:


Let v be the starting vertex

Let G be the graph in question

The following is the pseudo code without using queue

Initially label v as visited as you start from v
BFS(G,v)
    for all adjacent vertices w of v in G:
        if vertex w is not visited:
            label w as visited
    for all adjacent vertices w of v in G:
        recursively call BFS(G,w)



回答14:


BFS for a binary (or n-ary) tree can be done recursively without queues as follows (here in Java):

public class BreathFirst {

    static class Node {
        Node(int value) {
            this(value, 0);
        }
        Node(int value, int nChildren) {
            this.value = value;
            this.children = new Node[nChildren];
        }
        int value;
        Node[] children;
    }

    static void breathFirst(Node root, Consumer<? super Node> printer) {
        boolean keepGoing = true;
        for (int level = 0; keepGoing; level++) {
            keepGoing = breathFirst(root, printer, level);
        }
    }

    static boolean breathFirst(Node node, Consumer<? super Node> printer, int depth) {
        if (depth < 0 || node == null) return false;
        if (depth == 0) {
            printer.accept(node);
            return true;
        }
        boolean any = false;
        for (final Node child : node.children) {
            any |= breathFirst(child, printer, depth - 1);
        }
        return any;
    }
}

An example traversal printing numbers 1-12 in ascending order:

public static void main(String... args) {
    //            1
    //          / | \
    //        2   3   4
    //      / |       | \
    //    5   6       7  8
    //  / |           | \
    // 9  10         11  12

    Node root = new Node(1, 3);
    root.children[0] = new Node(2, 2);
    root.children[1] = new Node(3);
    root.children[2] = new Node(4, 2);
    root.children[0].children[0] = new Node(5, 2);
    root.children[0].children[1] = new Node(6);
    root.children[2].children[0] = new Node(7, 2);
    root.children[2].children[1] = new Node(8);
    root.children[0].children[0].children[0] = new Node(9);
    root.children[0].children[0].children[1] = new Node(10);
    root.children[2].children[0].children[0] = new Node(11);
    root.children[2].children[0].children[1] = new Node(12);

    breathFirst(root, n -> System.out.println(n.value));
}



回答15:


#include <bits/stdc++.h>
using namespace std;
#define Max 1000

vector <int> adj[Max];
bool visited[Max];

void bfs_recursion_utils(queue<int>& Q) {
    while(!Q.empty()) {
        int u = Q.front();
        visited[u] = true;
        cout << u << endl;
        Q.pop();
        for(int i = 0; i < (int)adj[u].size(); ++i) {
            int v = adj[u][i];
            if(!visited[v])
                Q.push(v), visited[v] = true;
        }
        bfs_recursion_utils(Q);
    }
}

void bfs_recursion(int source, queue <int>& Q) {
    memset(visited, false, sizeof visited);
    Q.push(source);
    bfs_recursion_utils(Q);
}

int main(void) {
    queue <int> Q;
    adj[1].push_back(2);
    adj[1].push_back(3);
    adj[1].push_back(4);

    adj[2].push_back(5);
    adj[2].push_back(6);

    adj[3].push_back(7);

    bfs_recursion(1, Q);
    return 0;
}



回答16:


Here is a JavaScript Implementation that fakes Breadth First Traversal with Depth First recursion. I'm storing the node values at each depth inside an array, inside of a hash. If a level already exists(we have a collision), so we just push to the array at that level. You could use an array instead of a JavaScript object as well since our levels are numeric and can serve as array indices. You can return nodes, values, convert to a Linked List, or whatever you want. I'm just returning values for the sake of simplicity.

BinarySearchTree.prototype.breadthFirstRec = function() {

    var levels = {};

    var traverse = function(current, depth) {
        if (!current) return null;
        if (!levels[depth]) levels[depth] = [current.value];
        else levels[depth].push(current.value);
        traverse(current.left, depth + 1);
        traverse(current.right, depth + 1);
    };

    traverse(this.root, 0);
    return levels;
};


var bst = new BinarySearchTree();
bst.add(20, 22, 8, 4, 12, 10, 14, 24);
console.log('Recursive Breadth First: ', bst.breadthFirstRec());
/*Recursive Breadth First:  
{ '0': [ 20 ],
  '1': [ 8, 22 ],
  '2': [ 4, 12, 24 ],
  '3': [ 10, 14 ] } */

Here is an example of actual Breadth First Traversal using an iterative approach.

BinarySearchTree.prototype.breadthFirst = function() {

    var result = '',
        queue = [],
        current = this.root;

    if (!current) return null;
    queue.push(current);

    while (current = queue.shift()) {
        result += current.value + ' ';
        current.left && queue.push(current.left);
        current.right && queue.push(current.right);
    }
    return result;
};

console.log('Breadth First: ', bst.breadthFirst());
//Breadth First:  20 8 22 4 12 24 10 14



回答17:


Following is my code for completely recursive implementation of breadth-first-search of a bidirectional graph without using loop and queue.



public class Graph
{
    public int V;   
    public LinkedList<Integer> adj[];

    Graph(int v)
    {
        V = v;
        adj = new LinkedList[v];
        for (int i=0; i<v; ++i)
            adj[i] = new LinkedList<>();
    }

    void addEdge(int v,int w)
    {
        adj[v].add(w);
        adj[w].add(v);
    }

    public LinkedList<Integer> getAdjVerted(int vertex)
    {
        return adj[vertex];
    }

    public String toString()
    {
        String s = "";

        for (int i=0;i<adj.length;i++)
        {
            s = s +"\n"+i +"-->"+ adj[i] ;
        }
        return s;
    }
}

//BFS IMPLEMENTATION

public static void recursiveBFS(Graph graph, int vertex,boolean visited[], boolean isAdjPrinted[])
    {
        if (!visited[vertex])
        {
            System.out.print(vertex +" ");
            visited[vertex] = true;
        }

        if(!isAdjPrinted[vertex])
        {
            isAdjPrinted[vertex] = true;
            List<Integer> adjList = graph.getAdjVerted(vertex);
            printAdjecent(graph, adjList, visited, 0,isAdjPrinted);
        }
    }

    public static void recursiveBFS(Graph graph, List<Integer> vertexList, boolean visited[], int i, boolean isAdjPrinted[])
    {
        if (i < vertexList.size())
        {
            recursiveBFS(graph, vertexList.get(i), visited, isAdjPrinted);
            recursiveBFS(graph, vertexList, visited, i+1, isAdjPrinted);
        }
    }

    public static void printAdjecent(Graph graph, List<Integer> list, boolean visited[], int i, boolean isAdjPrinted[])
    {
        if (i < list.size())
        {
            if (!visited[list.get(i)])
            {
                System.out.print(list.get(i)+" ");
                visited[list.get(i)] = true;
            }
            printAdjecent(graph, list, visited, i+1, isAdjPrinted);
        }
        else
        {
            recursiveBFS(graph, list, visited, 0, isAdjPrinted);
        }
    }




回答18:


Here is a BFS recursive traversal Python implementation, working for a graph with no cycle.

def bfs_recursive(level):
    '''
     @params level: List<Node> containing the node for a specific level.
    '''
    next_level = []
    for node in level:
        print(node.value)
        for child_node in node.adjency_list:
            next_level.append(child_node)
    if len(next_level) != 0:
        bfs_recursive(next_level)


class Node:
    def __init__(self, value):
        self.value = value
        self.adjency_list = []


来源:https://stackoverflow.com/questions/2549541/performing-breadth-first-search-recursively

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!