I am trying to implement Dijkstra's algorithm which can find the shortest path between the start node and the end node. Before reach the end node there are some 'must-pass' intermediate nodes (more than one) for example 2 or 3 must pass nodes which must pass before reach the end node.
If i have one must pass node the solution i found is find two different paths from the must pass node to destination and from must pass node to start node.
I am out of ideas how i can implement such an algorithm. Any suggestions?
Thanks.
List<Node> closestPathFromOrigin = null;
double maxD = Double.POSITIVE_INFINITY;
double _distance = 0;
int temp1 = 0;
List<Node> referencePath = new ArrayList<>();
boolean check = false;
Node startNode = null;
public List<Node> recursion(ArrayList<Node> points, ArrayList<Node> intermediatePoints) {
if (!check) {
System.out.println("--- DATA ---");
System.out.println("Intermediate points: " + intermediatePoints);
System.out.println("points: " + points.get(0).lat + " " + points.get(1).lat);
System.out.println("--Find the nearest intermediate point from the start point of driver--");
startNode = points.get(0);
System.out.println("Start point of driver: " + startNode.lat + " " + startNode.lon);
for (int i = 0; i < intermediatePoints.size(); i++) {
List<Node> _path = dijkstra(startNode, intermediatePoints.get(i));
_distance = 0;
for (int j = 0; j < _path.size() - 1; j++) {
_distance += calculateDistance(_path.get(j), _path.get(j + 1));
}
if (_distance < maxD) {
maxD = _distance;
closestPathFromOrigin = _path;
temp1 = i;
}
}
System.out.println("NearestPoint from driver's origin: " + intermediatePoints.get(temp1));
referencePath.addAll(closestPathFromOrigin);
startNode = intermediatePoints.get(temp1);
System.out.println("New StartNode: the nearestPoint from driver's origin: " + startNode.lat + " " + startNode.lon);
check = true;
intermediatePoints.remove(intermediatePoints.get(temp1));
System.out.println("New Intermediate points: " + intermediatePoints);
System.out.println("Intermediate points empty? No -> recursion, Yes -> stop");
if (!intermediatePoints.isEmpty()) {
System.out.println("Recursion!!! with new data of: intermediatePoints: " + intermediatePoints);
recursion(points, intermediatePoints);
} else {
System.out.println("Stop");
return referencePath;
}
} else {
System.out.println("Recursion: startNode: " + startNode.lat + " " + startNode.lon);
for (int i = 0; i < intermediatePoints.size(); i++) {
if (intermediatePoints.size() > 1) {
System.out.println("From the new start point to the next nearest intermediate points if more than one points");
List<Node> _path = dijkstra(startNode, intermediatePoints.get(i));
_distance = 0;
for (int j = 0; j < _path.size() - 1; j++) {
_distance += calculateDistance(_path.get(j), _path.get(j + 1));
}
if (_distance < maxD) {
maxD = _distance;
closestPathFromOrigin = _path;
temp1 = i;
}
referencePath.addAll(closestPathFromOrigin);
startNode = intermediatePoints.get(temp1);
check = true;
intermediatePoints.remove(intermediatePoints.get(temp1));
if (!intermediatePoints.isEmpty()) {
recursion(points, intermediatePoints);
} else {
return referencePath;
}
} else {
System.out.println("From the new start point to the next nearest intermediate points if just one point");
List<Node> _path = dijkstra(startNode, intermediatePoints.get(i));
//Collections.reverse(_path);
referencePath.addAll(_path);
}
if (i == intermediatePoints.size() - 1) {
System.out.println("Last Entry in intermediate points - find path to destination: " + points.get(1).lat + " " + intermediatePoints.get(i));
//List<Node> _path1 = dijkstra(points.get(1), intermediatePoints.get(i));
List<Node> _path1 = dijkstra(intermediatePoints.get(i), points.get(1));
Collections.reverse(_path1);
referencePath.addAll(_path1);
// referencePath.addAll(_path2);
}
}
}
return referencePath;
}
This is a generalisation of the travelling salesman problem. The TSP comes up as the case where all vertices are "must-pass".
Find shortest paths between each pair of must-pass vertices, from the source to each must-pass vertex, and from each must-pass vertex to the sink. Then use the famous O(n 2^n) dynamic programming algorithm for TSP to find the shortest path from source to sink meeting your constraints; here n will be two plus the number of must-pass vertices.
By finding shortest path between must include node and two(end and start) node. Form graph, then run shortest path algo(Dijkstra's algorithm). Start and end nodes will be same.
Unfortunately this problem is reduced to TSP so dont expect a polynomial solution but if no of intermediate node are small then you can do this reasonably fast like following :-
- try every sequence of nodes to visit possible.
- say you have s->a->b->c->d
- then evaluate min(s,d) + min(d,a) + min(c,d) using dijkstra
- the sequence that has minimum distance is your answer.
Time complexity : O(k!*ElogV)
where k is no of must pass nodes
来源:https://stackoverflow.com/questions/25368709/dijkstras-algorithm-with-must-pass-nodes