Python Pandas iterate over rows and access column names

眉间皱痕 提交于 2019-11-29 03:02:16

I also like itertuples()

for row in df.itertuples():
    print(row.A)
    print(row.Index)

since row is a named tuples, if you meant to access values on each row this should be MUCH faster

speed run :

df = pd.DataFrame([x for x in range(1000*1000)], columns=['A'])
st=time.time()
for index, row in df.iterrows():
    row.A
print(time.time()-st)
45.05799984931946

st=time.time()
for row in df.itertuples():
    row.A
print(time.time() - st)
0.48400020599365234

The item from iterrows() is not a Series, but a tuple of (index, Series), so you can unpack the tuple in the for loop like so:

for (idx, row) in df.iterrows():
    print(row.loc['A'])
    print(row.A)
    print(row.index)

#0.890618586836
#0.890618586836
#Index(['A', 'B', 'C', 'D'], dtype='object')
Avik Das
for i in range(1,len(na_rm.columns)):
           print ("column name:", na_rm.columns[i])

Output :

column name: seretide_price
column name: symbicort_mkt_shr
column name: symbicort_price
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!