Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x1, x2, ..., xk (k > 1) is such maximum element xj, that the following inequality holds: .
The lucky number of the sequence of distinct positive integers x1, x2, ..., xk (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence.
You've got a sequence of distinct positive integers s1, s2, ..., sn (n > 1). Let's denote sequence sl, sl + 1, ..., sr as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r].
Note that as all numbers in sequence s are distinct, all the given definitions make sence.
Input
The first line contains integer n (1 < n ≤ 105). The second line contains n distinct integers s1, s2, ..., sn (1 ≤ si ≤ 109).
Output
Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r].
Examples
Input
5
5 2 1 4 3
Output
7
Input
5
9 8 3 5 7
Output
15
Note
For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2].
For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
题意:
给你一个含有n个数的数组,让你找一个连续的区间,这个区间中的最大值异或上次大值得到的数值最大。
思路:
我们可以知道,一个数a[i] ,最多可以当两个区间的有效次大值
即a[i] 左边右边第一个比a[i] 大的数,与a[i] 构成的2个区间。
那么我们可以维护一个单调递减的单调栈,栈中每一个数 a[i] 左边的数就是数组中左边第一个比a[i]大的数,
把a[i] 从栈中弹出的数,就是 在数组中 a[i] 右边第一个比a[i] 大的数。
这样我们就可以把所有有效的区间中最大值和次大值都得出,更新答案即可。
细节见代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #include <vector> #include <iomanip> #define ALL(x) (x).begin(), (x).end() #define sz(a) int(a.size()) #define all(a) a.begin(), a.end() #define rep(i,x,n) for(int i=x;i<n;i++) #define repd(i,x,n) for(int i=x;i<=n;i++) #define pii pair<int,int> #define pll pair<long long ,long long> #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0) #define MS0(X) memset((X), 0, sizeof((X))) #define MSC0(X) memset((X), '\0', sizeof((X))) #define pb push_back #define mp make_pair #define fi first #define se second #define eps 1e-6 #define gg(x) getInt(&x) #define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl using namespace std; typedef long long ll; ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;} ll lcm(ll a, ll b) {return a / gcd(a, b) * b;} ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;} inline void getInt(int *p); const int maxn = 1000010; const int inf = 0x3f3f3f3f; /*** TEMPLATE CODE * * STARTS HERE ***/ int n; ll a[maxn]; stack<ll> st; int main() { //freopen("D:\\code\\text\\input.txt","r",stdin); //freopen("D:\\code\\text\\output.txt","w",stdout); gbtb; cin >> n; repd(i, 1, n) { cin >> a[i]; } ll ans = 0ll; repd(i, 1, n) { if (st.empty()) { st.push(a[i]); }else { while(st.size()&&st.top()<a[i]) { ans=max(ans,(st.top()^a[i])); st.pop(); } if(st.size()) ans=max(ans,(st.top()^a[i])); st.push(a[i]); } } ll x; if(st.size()) { x=st.top(); st.pop(); } while(st.size()) { ans=max(ans,(x^st.top())); x=st.top(); st.pop(); } cout<<ans<<endl; return 0; } inline void getInt(int *p) { char ch; do { ch = getchar(); } while (ch == ' ' || ch == '\n'); if (ch == '-') { *p = -(getchar() - '0'); while ((ch = getchar()) >= '0' && ch <= '9') { *p = *p * 10 - ch + '0'; } } else { *p = ch - '0'; while ((ch = getchar()) >= '0' && ch <= '9') { *p = *p * 10 + ch - '0'; } } }