How to use lambda layer in keras?

半世苍凉 提交于 2019-11-29 00:12:33

I would probaly duplicate the dense layers. Instead of having 2 layers with 128 units, have 4 layers with 64 units. The result is the same, but you will be able to perform the cross products better.

from keras.models import Model

#create dense layers and store their output tensors, they use the output of models 1 and to as input    
d1 = Dense(64, ....)(Model_1.output)   
d2 = Dense(64, ....)(Model_1.output)   
d3 = Dense(64, ....)(Model_2.output)   
d4 = Dense(64, ....)(Model_2.output)   

cross1 = Lambda(myFunc, output_shape=....)([d1,d4])
cross2 = Lambda(myFunc, output_shape=....)([d2,d3])

#I don't really know what kind of "merge" you want, so I used concatenate, there are Add, Multiply and others....
output = Concatenate()([cross1,cross2])
    #use the "axis" attribute of the concatenate layer to define better which axis will be doubled due to the concatenation    

model = Model([Model_1.input,Model_2.input], output)

Now, for the lambda function:

import keras.backend as K

def myFunc(x):
    return x[0] * x[1]
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!