启发式分治
给定n个数,求满足某种条件的点对数目或最大权值,而这个最大权值与点对(a,b)的区间[a,b]的区间最大/最小值有关。
那么这时就可以考虑分治,对于区间[L,R],找到最小/大值所在位置,然后处理横跨最小/大值所在位置的点对,然后递归处理子区间。
HUD-Make Rounddog Happy
- 求有多少区间,满足其中每个数都不同,并且区间最大值大于k
- 预处理区间最大值,以及每个数往左往右最远不相同的位置
- 暴力处理区间小的,然后递归
#pragma GCC optimize(2) #include <bits/stdc++.h> #define ll long long using namespace std; const int maxn = 3e5 + 7; int stmax[maxn][20], pos[maxn][20], poww[20], logg[maxn]; int n, s[maxn], p, L[maxn], R[maxn]; bool vis[maxn]; void get_st() { poww[0] = 1; for (int i = 1; i < 20; ++i) poww[i] = poww[i - 1] << 1; for (int i = 2; i <= n; ++i) logg[i] = logg[i >> 1] + 1; int temp = 1; for (int j = 1; j <= logg[n]; ++j) { for (int i = 1; i <= n - temp * 2 + 1; ++i) { if (stmax[i][j - 1] >= stmax[i + temp][j - 1]) { stmax[i][j] = stmax[i][j - 1]; pos[i][j] = pos[i][j - 1]; } else { stmax[i][j] = stmax[i + temp][j - 1]; pos[i][j] = pos[i + temp][j - 1]; } } temp <<= 1; } } int query_pos(int l, int r) { int k = logg[r - l + 1]; if (stmax[l][k] >= stmax[r - poww[k] + 1][k]) { return pos[l][k]; } else { return pos[r - poww[k] + 1][k]; } } void get_diff() { vis[s[1]] = 1; int r = 2; for (int i = 1; i <= n; ++i) { while (r <= n && !vis[s[r]]) { vis[s[r]] = 1; r++; } vis[s[i]] = 0; R[i] = r - 1; } vis[s[n]] = 1; r = n - 1; for (int i = n; i >= 1; --i) { while (r >= 1 && !vis[s[r]]) { vis[s[r]] = 1; r--; } vis[s[i]] = 0; L[i] = r + 1; } } ll ans = 0; void solve(int l, int r) { if (l > r) return; int mid = query_pos(l, r); if (r - mid > mid - l) { for (int i = l; i <= mid; ++i) { int d = max(mid, s[mid] - p + i - 1); int dd = min(R[i], r); if (dd < d)continue; ans += dd - d + 1; } } else { for (int i = r; i >= mid; --i) { int d = min(mid, p + 1 + i - s[mid]); int dd = max(L[i], l); if (dd > d)continue; ans += d - dd + 1; } } solve(l, mid - 1); solve(mid + 1, r); } int main() { int _; scanf("%d", &_); while (_--) { scanf("%d%d", &n, &p); for (int i = 1; i <= n; ++i) { scanf("%d", &s[i]); stmax[i][0] = s[i]; pos[i][0] = i; vis[i] = 0; } get_st(); get_diff(); ans = 0; solve(1, n); printf("%lld\n", ans); } return 0; }
Removing Stones
题意最后可以化为求有多少个区间,满足区间最大值小于区间和的两倍
最大值还是ST表求,然后二分求满足区间和的位置
#include <bits/stdc++.h> #define ll long long using namespace std; const int maxn = 3e5 + 7; int stmax[maxn][20], pos[maxn][20], poww[20], logg[maxn]; int n, s[maxn]; ll sum[maxn],sum1[maxn]; void get_st() { poww[0] = 1; for (int i = 1; i < 20; ++i) poww[i] = poww[i - 1] << 1; for (int i = 2; i <= n; ++i) logg[i] = logg[i >> 1] + 1; int temp = 1; for (int j = 1; j <= logg[n]; ++j) { for (int i = 1; i <= n - temp * 2 + 1; ++i) { if (stmax[i][j - 1] >= stmax[i + temp][j - 1]) { stmax[i][j] = stmax[i][j - 1]; pos[i][j] = pos[i][j - 1]; } else { stmax[i][j] = stmax[i + temp][j - 1]; pos[i][j] = pos[i + temp][j - 1]; } } temp <<= 1; } } int query_pos(int l, int r) { int k = logg[r - l + 1]; if (stmax[l][k] >= stmax[r - poww[k] + 1][k]) { return pos[l][k]; } else { return pos[r - poww[k] + 1][k]; } } ll ans = 0; int erfen1(int l,int r,ll x){ while(l<r){ int mid=(l+r)>>1; if(sum[mid]>=x) r=mid;else l=mid+1; } return l; } int erfen2(int l,int r,ll x){ while(l<r){ int mid=(l+r+1)>>1; if(sum1[mid]<=x)l=mid; else r=mid-1; } return l; } void solve(int l, int r) { if (l >= r)return; int mid = query_pos(l, r); if (mid - l < r - mid) { for (int i = l; i <= mid; ++i) { int pp=erfen1(mid,r+1,s[mid]*2ll+sum1[i]); //cout<<pp<<" "<<s[mid]*2ll+sum1[i]<<" "<<mid<<endl; ans+=r-pp+1; } } else { for (int i = r; i >= mid; --i) { int pp=erfen2(l-1,mid,sum[i]-s[mid]*2ll); ans+=pp-l+1; } } solve(l, mid - 1); solve(mid + 1, r); } int main() { int _; scanf("%d", &_); while (_--) { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &s[i]); stmax[i][0] = s[i]; pos[i][0] = i; sum[i]=sum[i-1]+s[i]; sum1[i]=sum[i-1]; } get_st(); ans=0; solve(1,n); printf("%lld\n",ans); } return 0; }