efficiently knowing if intersection of two list is empty or not, in python [duplicate]

拟墨画扇 提交于 2019-11-28 21:13:32

Or more concisely

if set(L) & set(M):
    # there is an intersection
else:
    # no intersection

If you really need True or False

bool(set(L) & set(M))

After running some timings, this seems to be a good option to try too

m_set=set(M)
any(x in m_set  for x in L)

If the items in M or L are not hashable you have to use a less efficient approach like this

any(x in M for x in L)

Here are some timings for 100 item lists. Using sets is considerably faster when there is no intersection, and a bit slower when there is a considerable intersection.

M=range(100)
L=range(100,200)

timeit set(L) & set(M)
10000 loops, best of 3: 32.3 µs per loop

timeit any(x in M for x in L)
1000 loops, best of 3: 374 µs per loop

timeit m_set=frozenset(M);any(x in m_set  for x in L)
10000 loops, best of 3: 31 µs per loop

L=range(50,150)

timeit set(L) & set(M)
10000 loops, best of 3: 18 µs per loop

timeit any(x in M for x in L)
100000 loops, best of 3: 4.88 µs per loop

timeit m_set=frozenset(M);any(x in m_set  for x in L)
100000 loops, best of 3: 9.39 µs per loop


# Now for some random lists
import random
L=[random.randrange(200000) for x in xrange(1000)]
M=[random.randrange(200000) for x in xrange(1000)]

timeit set(L) & set(M)
1000 loops, best of 3: 420 µs per loop

timeit any(x in M for x in L)
10 loops, best of 3: 21.2 ms per loop

timeit m_set=set(M);any(x in m_set  for x in L)
1000 loops, best of 3: 168 µs per loop

timeit m_set=frozenset(M);any(x in m_set  for x in L)
1000 loops, best of 3: 371 µs per loop

To avoid the work of constructing the intersection, and produce an answer as soon as we know that they intersect:

m_set = frozenset(M)
return any(x in m_set for x in L)

Update: gnibbler tried this out and found it to run faster with set() in place of frozenset(). Whaddayaknow.

First of all, if you do not need them ordered, then switch to the set type.

If you still need the list type, then do it this way: 0 == False

len(set.intersection(set(L), set(M)))

That's the most generic and efficient in a balanced way I could come up with (comments should make the code easy to understand):

import itertools, operator

def _compare_product(list1, list2):
    "Return if any item in list1 equals any item in list2 exhaustively"
    return any(
        itertools.starmap(
            operator.eq,
            itertools.product(list1, list2)))

def do_they_intersect(list1, list2):
    "Return if any item is common between list1 and list2"

    # do not try to optimize for small list sizes
    if len(list1) * len(list2) <= 100: # pick a small number
        return _compare_product(list1, list2)

    # first try to make a set from one of the lists
    try: a_set= set(list1)
    except TypeError:
        try: a_set= set(list2)
        except TypeError:
            a_set= None
        else:
            a_list= list1
    else:
        a_list= list2

    # here either a_set is None, or we have a_set and a_list

    if a_set:
        return any(itertools.imap(a_set.__contains__, a_list))

    # try to sort the lists
    try:
        a_list1= sorted(list1)
        a_list2= sorted(list2)
    except TypeError: # sorry, not sortable
        return _compare_product(list1, list2)

    # they could be sorted, so let's take the N+M road,
    # not the N*M

    iter1= iter(a_list1)
    iter2= iter(a_list2)
    try:
        item1= next(iter1)
        item2= next(iter2)
    except StopIteration: # one of the lists is empty
        return False # ie no common items

    while 1:
        if item1 == item2:
            return True
        while item1 < item2:
            try: item1= next(iter1)
            except StopIteration: return False
        while item2 < item1:
            try: item2= next(iter2)
            except StopIteration: return False

HTH.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!