Smoothing Data in Contour Plot with Matplotlib

隐身守侯 提交于 2019-11-28 19:58:50

You could smooth your data with a gaussian_filter:

import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage as ndimage

X, Y = np.mgrid[-70:70, -70:70]
Z = np.cos((X**2+Y**2)/200.)+ np.random.normal(size=X.shape)

# Increase the value of sigma to increase the amount of blurring.
# order=0 means gaussian kernel
Z2 = ndimage.gaussian_filter(Z, sigma=1.0, order=0)
fig=plt.figure()
ax=fig.add_subplot(1,2,1)
ax.imshow(Z)
ax=fig.add_subplot(1,2,2)
ax.imshow(Z2)
plt.show()

The left-side shows the original data, the right-side after gaussian filtering.

Much of the above code was taken from the Scipy Cookbook, which demonstrates gaussian smoothing using a hand-made gauss kernel. Since scipy comes with the same built in, I chose to use gaussian_filter.

One easy way to smooth data is using a moving average algorithm. One simple form of moving average is to calculate the average of adjacent measurements at a certain position. In a one-dimensional series of measurements a[1:N], for example, the moving average at a[n] can be calculated as a[n] = (a[n-1] + a[n] + a[n+1]) / 3, for example. If you go through all of your measurements, you're done. In this simple example, our averaging window has size 3. You can also use windows of different sizes, depending on how much smoothing you want.

To make the calculations easier and faster for a wider range of applications, you can also use an algorithm based on convolution. The advantage of using convolution is that you can choose different kinds of averages, like weighted averages, by simply changing the window.

Let's do some coding to illustrate. The following excerpt needs Numpy, Matplotlib and Scipy installed. Click here for the full running sample code

from __future__ import division
import numpy
import pylab
from scipy.signal import convolve2d

def moving_average_2d(data, window):
    """Moving average on two-dimensional data.
    """
    # Makes sure that the window function is normalized.
    window /= window.sum()
    # Makes sure data array is a numpy array or masked array.
    if type(data).__name__ not in ['ndarray', 'MaskedArray']:
        data = numpy.asarray(data)

    # The output array has the same dimensions as the input data 
    # (mode='same') and symmetrical boundary conditions are assumed
    # (boundary='symm').
    return convolve2d(data, window, mode='same', boundary='symm')

The following code generates some arbitrary and noisy data and then calculates the moving average using four different sized box windows.

M, N = 20, 2000  # The shape of the data array
m, n = 3, 10     # The shape of the window array

y, x = numpy.mgrid[1:M+1, 0:N]
# The signal and lots of noise
signal = -10 * numpy.cos(x / 500 + y / 10) / y
noise = numpy.random.normal(size=(M, N))
z = signal + noise

# Calculating a couple of smoothed data.
win = numpy.ones((m, n))
z1 = moving_average_2d(z, win)
win = numpy.ones((2*m, 2*n))
z2 = moving_average_2d(z, win)
win = numpy.ones((2*m, 4*n))
z3 = moving_average_2d(z, win)
win = numpy.ones((2*m, 10*n))
z4 = moving_average_2d(z, win)

And then, to see the different results, here is the code for some plotting.

# Initializing the plot
pylab.close('all')
pylab.ion()
fig = pylab.figure()
bbox = dict(edgecolor='w', facecolor='w', alpha=0.9)
crange = numpy.arange(-15, 16, 1.) # color scale data range

# The plots
ax = pylab.subplot(2, 2, 1)
pylab.contourf(x, y, z, crange)
pylab.contour(x, y, z1, crange, colors='k')
ax.text(0.05, 0.95, 'n=10, m=3', ha='left', va='top', transform=ax.transAxes, 
    bbox=bbox)

bx = pylab.subplot(2, 2, 2, sharex=ax, sharey=ax)
pylab.contourf(x, y, z, crange)
pylab.contour(x, y, z2, crange, colors='k')
bx.text(0.05, 0.95, 'n=20, m=6', ha='left', va='top', transform=bx.transAxes, 
    bbox=bbox)

bx = pylab.subplot(2, 2, 3, sharex=ax, sharey=ax)
pylab.contourf(x, y, z, crange)
pylab.contour(x, y, z3, crange, colors='k')
bx.text(0.05, 0.95, 'n=40, m=6', ha='left', va='top', transform=bx.transAxes, 
    bbox=bbox)

bx = pylab.subplot(2, 2, 4, sharex=ax, sharey=ax)
pylab.contourf(x, y, z, crange)
pylab.contour(x, y, z4, crange, colors='k')
bx.text(0.05, 0.95, 'n=100, m=6', ha='left', va='top', transform=bx.transAxes, 
    bbox=bbox)

ax.set_xlim([x.min(), x.max()])
ax.set_ylim([y.min(), y.max()])

fig.savefig('movingavg_sample.png')
# That's all folks!

And here are the plotted results for different sized windows:

The sample code given here uses a simple box (or rectangular) window in two dimensions. There are several different kinds of windows available and you might want to check Wikipedia for more examples.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!