目录
RNN笔记
模型结构
循环神经网络可以用来处理一些序列问题,其网络结构如下(图片来源于colah's blog)

在\(t\)时刻输入的特征$, \mathbf x, $ 经过A的处理变换为\(\, \mathbf h_t\),其中A代表一定的处理过程,不同的RNN结构处理过程也不近相同。
下图为最基本的RNN网络结构,参数$, \rm U, \(作用于输入特征\), \mathbf x\(,参数\), \rm W, \(作用于前一时刻状态\), {\rm s}_{t-1}\(,经过激活函数得到当前时刻状态\), {\rm s}_t\(,之后经过\), \rm V,\(和激活函数的作用得到当前时刻的输出\), {\rm o}_t$,其对应的变换公式如下:
\[ \begin{align*} s_t &= \sigma({\rm W}s_{t-1}+{\rm U}{\mathbf x}_t+{\rm b}_S)\\ o_t &= \sigma({\rm V}s_t+{\rm b}_o) \end{align*} \]

上述的RNN由于梯度消失的原因,不能很好的捕捉长期信息。为了解决该问题,学者们提出了LSTM和简化版的GRU。
LSTM
下图是LSTM的内部结构图(图片来源colah's blog)

其除了记录状态\(\, {\rm h}_t\,\)以外又引入了\(\, \rm C\),其变换如下:
\[ \begin{align*} f_t &= \sigma({\rm U}_f\mathbf x_t+{\rm W}_f \mathbf h_{t-1}+{\rm b}_f) ~~~~ \textit{作为forget gate}\\ r_t &= \sigma({\rm U}_r\mathbf x_t+{\rm W}_r \mathbf h_{t-1}+{\rm b}_r) ~~~ \textit{ 控制引入信息}\\ z_t &= \tanh({\rm U}_z \mathbf x_t + {\rm W}_z \mathbf h_{t-1}+{\rm b}_z) \textit{} ~~~ \textit{为C引入信息}\\ c_t &= c_{t-1} \circ f_t+r_t \circ z_t\\ o_t &= \sigma({\rm U}_o\mathbf x_t+{\rm W}_o\mathbf h_{t-1}+{\rm b}_o)\\ h_t &= o_t \circ \text{tanh}(c_t) \end{align*} \]
关于各个gate
的解读可以参阅colah's bolg。
GRU
GRU是LSTM的简化版本,其内部结构如下图所示(图片来源colah's blog):

相比于LSTM,GRU取消了Cell State
,其对应的变换如下:
\[ \begin{align*} r_t &= \sigma({\rm U}_r\mathbf x_t+{\rm W}_r h_{t-1}+{\rm b}_r)\\ z_t & = \sigma({\rm U}_z \mathbf x_t + {\rm W}_z h_{t-1}+{\rm b}_z)\\ \bar{h}_t &= \tanh(\rm{U}_h \mathbf x_t + {\rm W}_h \left(r_t \circ h_{t-1}\right)+{\rm b_h})\\ h_t &= h_{t-1} \circ (1-z_t)+ \bar{h}_t\circ z_t\\ \end{align*} \]
虽然RNN变种各不相同,其大致的思路均为对旧有信息进行选择(LSTM中的\(\, f_t\,\)和GRU中的\(\, r_t\))再根据当前输入\(\,\mathbf x_t\,\)引入新信息(LSTM中的\(\, z_t\,\)和GRU中的\(\,\bar{h}_t\))。
back propagations
循环神经网络由于涉及了时间,如状态$, s_t, \(中涉及了\), s_{t-1}$,在进行反向传播时需要考虑时间因素。下面对RNN、LSTM和GRU的back propagation through time进行说明。
Back Propagation: RNN
假设$, \mathbf y, \(为`one hot`编码,\)o_t,\(层的激活函数为`softmax`,\)s_t, $层的激活函数为sigmoid
,交叉熵为损失函数。
对损失函数求微分
\[ \begin{align*} {\rm d}l &= -{\rm d}\left(\mathbf y_t^T\log ^{o_t}\right)\\ & ={\rm d}(-\mathbf y_t^T\left(Vs_t+b_o-\log^{1^Te^{Vs_t+b_o}}\right)\\ & = -\mathbf y_t^T {\rm d}(V s_t)+\mathbf y_t^T {\rm d}(\log^{1^Te^{Vs_t+b_o}})\\ & = -\mathbf y_t^T {\rm d}(V s_t)+\mathbf y_t^T {\bf 1}\frac{{\rm d}(1^Te^{Vs_t+b_o})}{1^Te^{Vs_t+b_o}}\\ & = -\mathbf y_t^T {\rm d}(V s_t)+\frac{1^T e^{Vs_t+b_o}\circ {\rm d}(Vs_t+b)}{1^Te^{Vs_t+b_o}}\\ & = -\mathbf y_t^T {\rm d}(Vs_t)+\frac{{e^{Vs_t+b_o}}^T{\rm d}(V s_t)}{1^Te^{Vs_t+b_o}}\\ & = tr\left(s_t\left(o_t - \mathbf y_t\right)^T{\rm d}V\right)+tr\left(\left(o_t - \mathbf y_t\right)^TV{\rm d}s_t\right) \end{align*} \]
关于\(\, {\rm d}s_t\):
\[ \begin{align*} {\rm d}s_t &= {\rm d}\left(\sigma\left({\rm U}_s\mathbf x_t+{\rm W}_s s_{t-1}+{\rm b}_s\right)\right)\\ &= \left(s_t \circ\left(1-s_t\right)\right)\circ{\rm d}({\rm U}_s\mathbf x_t+{\rm W}_s s_{t-1}+{\rm b}_s) \end{align*} \]
带入$, {\rm d}_l, $得到
\[ \begin{align*} {\rm d}_l &= tr(s_t(o_t-\mathbf y_t)^T {\rm d}V)+\\ &~~~~~ tr\left(\left(o_t - \mathbf y_t\right)^T V \left(s_t\circ\left(1-s_t\right)\right)\circ{\rm d}({\rm U}_s\mathbf x_t+{\rm W}_ss_{t-1}+{\rm b}_s)\right)\\ \\ &=tr(s_t(o_t-\mathbf y_t)^T {\rm d}V)+\\ &~~~~tr\left(\left(V^T(o_t-\mathbf y_t)\circ \left(s_t\circ\left(1-s_t\right)\right)\right)^T{\rm d}({\rm U}_s\mathbf x_t+{\rm W}_ss_{t-1}+{\rm b}_s)\right)\\ &=tr(s_t(o_t-\mathbf y_t)^T {\rm d}V)+\\ &~~~~tr\left(\left(V^T(o_t-\mathbf y_t)\circ \left(s_t\circ\left(1-s_t\right)\right)\right)^T({\rm dU} \,\mathbf x_t+{\rm dW}\, s_{t-1}+{\rm W}_s{\rm d}s_{t-1})\right)\\ \end{align*} \]
对于\(\,{\rm d}s_{t-1}\,\)项,其形式与$, {\rm d}s_t, \(一样,同样包含\), \rm{dU}, \(和\), {\rm dW}\(,因此需要不断的循环执行该过程。这就意味着对于时间\), t\(,其需要循环\), t-1,$次,但是在通常应用中只会回顾指定次数。
对于参数\(\, V\,\),\(\rm{d}s_{t-1}\,\)并不包含,为\(\nabla_V\, l=(o_t-\mathbf y_t)s_t^T\)
对于参数$, {\rm U}, \(和\), {\rm W}\(,则计算出\)\left(V^T(o_t-\mathbf y_t)\circ \left(s_t\circ\left(1-s_t\right)\right)\right)\(后右乘\), \mathbf x_t^T\(即为当前的梯度,再左乘\), {\rm W}^T$
Back Propagation: LSTM
Back Propagation: GRU
back propagation代码
RNN
RNN代码来源于WILDML(github地址),用于生成文段。
数据为收集的reddit评论,使用了高频的8000词汇,低频词汇用UNKNOWN
代替。
# 数据处理 path = "your file path" import sys import os from datetime import datetime import numpy as np import csv import nltk import operator import itertools import matplotlib.pyplot as plt nltk.download("book") vocabulary_size = 8000 unknown_token = "UNKNOWN_TOKEN" sentence_start_token = "SENTENCE_START" sentence_end_token = "SENTENCE_END" try: f = open(path, 'rt', encoding='utf-8') except: print("打开文件失败") f.close() # 读取数据 try: reader = csv.reader(f, skipinitialspace=True) next(reader) sentences = itertools.chain(*[nltk.sent_tokenize(x[0].lower()) for x in reader]) sentences = ["%s, %s, %s " %(sentence_start_token, x, sentence_end_token) for x in sentences] print("Parsed %d sentences." % (len(sentences))) except: exit(-1) tokenized_sentences = [nltk.word_tokenize(sent) for sent in sentences] word_freq = nltk.FreqDist(itertools.chain(*tokenized_sentences)) print("Found %d unique words tokens." % len(word_freq.items())) vocab = word_freq.most_common(vocabulary_size-1) index_to_word = [x[0] for x in vocab] index_to_word.append(unknown_token) word_to_index = dict([(w,i) for i,w in enumerate(index_to_word)]) print("Using vocabulary size %d." % vocabulary_size) print("The least frequent word in our vocabulary is '%s' and appeared %d times." % (vocab[-1][0], vocab[-1][1])) # Replace all words not in our vocabulary with the unknown token for i, sent in enumerate(tokenized_sentences): tokenized_sentences[i] = [w if w in word_to_index else unknown_token for w in sent] print("\nExample sentence: '%s'" % sentences[0]) print("\nExample sentence after Pre-processing: '%s'" % tokenized_sentences[0])
输入特征为句子的开始标记至结束标记前一个字符,输出为开始标记的后一个字符至结束标记:
# 生成输入特征和输出数据 X_train = np.asarray([[word_to_index[w] for w in sent[:-1]] for sent in tokenized_sentences]) y_train = np.asarray([[word_to_index[w] for w in sent[-1]] for sent in token
在进行反向传播过程中,一共有三个参数需要训练\({\rm U, W, V}\),其中\({\rm U,W}\)与时间因素有关
import numpy as np def softmax(x): xt = np.exp(x - max(x)) return xt / xt.sum() class RNN(): def __init__(self, word_dim, hidden_dim=100, bptt_truncate=4): """ param: word_dim: input dimension hidden_dim: hidden layers dimension bptt_truncate: the number of time steps that back propagation will look back """ self.word_dim = word_dim self.hidden_dim = hidden_dim self.bptt_truncate = bptt_truncate self.W = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (hidden_dim, hidden_dim)) self.U = np.random.uniform(-np.sqrt(1./word_dim), np.sqrt(1./word_dim),(hidden_dim, word_dim)) self.V = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (word_dim, hidden_dim)) def forward_propagation(self, x): """ param: x: array like, dim(x) = 1 """ # The total number of time steps T = len(x) s = np.zeros((T+1, self.hidden_dim)) s[-1] = np.zeros(self.hidden_dim) o = np.zeros((T, self.word_dim)) for t in range(T): s[t] = np.tanh(self.U[:, x[t]]+self.W.dot(s[t-1])) o[t] = softmax(self.V.dot(s[t])) return [o, s] def predict(self, x): o, _ = self.forward_propagation(x) return np.argmax(o, axis=1) def calculate_total_loss(self, x, y): """ param: x: dim(x) = 2, words are on axis 0, setences on axis 1 y: dim(x) = 2 """ L = 0 for i in range(len(y)): o, s = self.forward_propagation(x[i]) correct_word_predictions = o[np.arange(len(y[i])), y[i]] L += -1 * np.sum(np.log(correct_word_predictions)) return L def calculate_loss(self, x, y): """ param: x: dim(x) = 2, words are on axis 0, setences on axis 1 y: same to x """ N = np.sum(len(y_i) for y_i in y) return self.calculate_total_loss(x, y) / N def back_propagation(self, x, y): """ param: x: dim(x) = 1 return: dW: derivative of W dU: derivative of U dV: derivative of V """ dV = np.zeros_like(self.V) dW = np.zeros_like(self.W) dU = np.zeros_like(self.U) T = len(x) o, s = self.forward_propagation(x) delta_o = o delta_o[np.arange(T), y] = delta_o[np.arange(T), y] - 1. for t in range(T-1, -1, -1): dV += np.outer(delta_o[t], s[t]) delta_t = self.V.T.dot(delta_o[t]) * (1 - s[t]**2) for j in range(t, max(t-4, -1), -1): dW += np.outer(delta_t, s[j-1]) dU[:, x[j]] += delta_t delta_t = self.W.T.dot(delta_t) * (1 - s[j-1]**2) return [dV, dU, dW] def gradient_check(self, x,y, h=0.001, error_threshold=0.01): gradient = self.back_propagation(x, y) model_parameters = ['V', 'U', 'W'] for pidx, pname in enumerate(model_parameters): parameter = operator.attrgetter(pname)(self) print("Performing gradient check for parameter %s with size %d" % (pname, np.prod(parameter.shape))) it = np.nditer(parameter, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: ix = it.multi_index original_value = parameter[ix] parameter[ix] = original_value + h gradplus = self.calculate_total_loss([x], [y]) parameter[ix] = original_value - h gradminus = self.calculate_total_loss([x], [y]) estimated_gradient = (gradplus - gradminus) / (2. * h) parameter[ix] = original_value backprop_gradient = gradient[pidx][ix] relative_error = np.abs(backprop_gradient - estimated_gradient)/(np.abs(backprop_gradient) + np.abs(estimated_gradient)) if relative_error > error_threshold: print("Gradient Check ERROR: parameter=%s ix=%s" % (pname, ix)) print("+h Loss: %f" % gradplus) print("-h Loss: %f" % gradminus) print("Estimated_gradient: %f" % estimated_gradient) print("Backpropagation gradient: %f" % backprop_gradient) print("Relative Error: %f" % relative_error) return it.iternext() print("Gradient check for parameter %s passed." % (pname)) def sgd_step(self, x, y, learning_rate): dV, dU, dW = self.back_propagation(x, y) self.V -= learning_rate * dV self.U -= learning_rate * dU self.W -= learning_rate * dW def train_with_sgd(self, X_train, y_train, learning_rate=0.005, nepoch=10, evaluate_loss_after=5): losses = [] num_examples_seen = 0 for epoch in range(nepoch): if (epoch % evaluate_loss_after == 0): loss = self.calculate_loss(X_train, y_train) losses.append((epoch, loss)) time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print("%s: Loss after num_examples_seen=%d epoch=%d: %f" %(time, num_examples_seen, epoch, loss)) if (len(losses)>1 and losses[-1][1] > losses[-2][1]): learning_rate = 0.5 * learning_rate for i in range(len(y_train)): self.sgd_step(X_train[i], y_train[i], learning_rate) num_examples_seen += 1 return losses
参考资料
[1] bptt(https://ir.hit.edu.cn/~jguo/docs/notes/bptt.pdf)
[2] BPTT Tutorial(https://www.cs.ubc.ca/~minchenl/doc/BPTTTutorial.pdf)
[3] 矩阵求导术—知乎[长躯鬼侠]
[4] WILDML~Recurrent Neural Networks Tutorial